
TEAMFL
Y

Team-Fly®

DATA

STRUCTURES

IN JAVA

DATA

STRUCTURES

IN JAVA

Sandra Andersen

Concordia College

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts

BOSTON TORONTO LONDON SINGAPORE

A Laboratory Course

Copyright © 2002 by Jones and Bartlett Publishers, Inc.

Library of Congress Cataloging-in-Publication Data

Andersen, Sandra.

Data structures in Java: a laboratory course / Sandra Andersen.

p. cm.

ISBN 0-7637-1816-5

1. Java (Computer program language) 2. Data structures (Computer science) I. Title.

QA76.73.J38 A46 2001

005.13’3—dc21 2001050446

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in

any form, electronic or mechanical, including photocopying, recording, or any information storage or retrieval

system, without written permission from the copyright owner.

Editor-in-Chief: J. Michael Stranz

Development and Product Manager: Amy Rose

Production Assistant: Tara McCormick

Composition: Northeast Compositors

Cover Design: Kristin Ohlin

Printing and Binding: Courier Stoughton

Cover printing: Courier Stoughton

This book was typeset in FrameMaker 5.5 on a Macintosh G4. The font families used were Rotis Sans Serif,

Rotis Serif, and Prestige Elite.

Printed in the United States of America

05 04 03 02 01 10 9 8 7 6 5 4 3 2 1

World Headquarters

Jones and Bartlett Publishers

40 Tall Pine Drive

Sudbury, MA 01776

978-443-5000

info@jbpub.com

www.jbpub.com

Jones and Bartlett Publishers

Canada

2406 Nikanna Road

Mississauga, ON L5C 2W6

CANADA

Jones and Bartlett Publishers

International

Barb House, Barb Mews

London W6 7PA

UK

To my family and friends, for their love and encouragement.

—S.A.

v

Preface

TO THE STUDENT

Objectives

To learn a subject such as computer science, you need to immerse yourself in it — learning by

doing rather than by simply observing. Through the study of several classic data structures and

algorithms, you will become a better informed and more knowledgeable computer science stu-

dent and programmer. To be able to professionally choose the best algorithm and data structure

for a particular set of resource constraints takes practice.

An emphasis on learning by doing is used throughout Data Structures in Java: A Laboratory

Course. In each laboratory, you explore a particular data structure by implementing it. As you

create an implementation, you learn how the data structure works and how it can be applied.

The resulting implementation is a working piece of software that you can use in later laborato-

ries and programming projects.

Organization of the Laboratories

Each laboratory consists of four parts: Prelab, Bridge, In-lab, and Postlab. The Prelab is a home-

work assignment in which you create an implementation of a data structure using the tech-

niques that your instructor presents in lecture, along with material from your textbook. In the

Bridge exercise, you test and debug the software you developed in the Prelab. The In-lab phase

consists of three exercises. The first two exercises apply or extend the concepts introduced in

the Prelab. In the third exercise, you apply the data structure you created in the Prelab to the

solution of a problem. The last part of each laboratory, the Postlab, is a homework assignment

in which you analyze a data structure in terms of its efficiency or use.

Your instructor will specify which exercises you need to complete for each laboratory. Be sure

to check whether your instructor wants you to complete the Bridge exercise prior to your lab

period or during lab. Use the cover sheet provided with the laboratory to keep track of the exer-

cises you have been assigned.

Student Source Code

The Student Source Code that accompanies this manual (which is available at http://

www.oodatastructures.jbpub.com) contains a set of tools that make it easier for you to create

data structure implementations. Each laboratory includes a visualization method called show-

Structure that displays a given data structure. You can use this method to watch how your rou-

tines change the content and organization of the data structure. Each laboratory also includes

an interactive test program that you can use to help you test and debug your work.

PREFACE

vi

Additional files containing data, partial solution shells, and other supporting routines also are

provided in the source code. The file Readme.txt lists the files used in each laboratory.

TO THE INSTRUCTOR

Objective

Laboratories are a way of involving students as active, creative partners in the learning process.

By making the laboratories the focal point of the course, students are immersed in the course

material. Students are thus challenged to exercise their creativity (in both programming and

analysis) and yet receive the structure, feedback, and support that they need to meet the chal-

lenge.

Organization of the Laboratories

In this manual, the laboratory framework includes a creative element but shifts the time-inten-

sive aspects outside of the closed laboratory period. Within this structure, each laboratory

includes four parts: Prelab, Bridge, In-lab, and Postlab.

Prelab

The Prelab exercise is a homework assignment that links the lecture with the laboratory period.

In the Prelab, students explore and create on their own and at their own pace. Their goal is to

synthesize the information they learn in lecture with material from their textbook to produce a

working piece of software, usually an implementation of an abstract data type (ADT). A Prelab

assignment—including a review of the relevant lecture and textbook materials—typically takes

an evening to complete (that is, four to five hours).

Bridge

The Bridge exercise asks students to test the software they developed in the Prelab. The stu-

dents create a test plan that they then use as a framework for evaluating their code. An interac-

tive, command-driven test program is provided for each laboratory, along with a visualization

routine (showStructure) that allows students to see changes in the content and organization of

a data structure. This assignment provides an opportunity for students to receive feedback on

their Prelab work and to resolve any difficulties they might have encountered. It should take

students approximately one hour to finish this exercise.

In-lab

The In-lab section takes place during the actual laboratory period (assuming you are using a

closed laboratory setting). Each In-lab consists of three exercises, and each exercise has a dis-

tinct role. The first two exercises stress programming and provide a capstone to the Prelab. In

PREFACE

vii

Exercise 3, students apply the software they developed in the Prelab to a real-world problem

that has been honed to its essentials to fit comfortably within the closed laboratory environ-

ment. Exercises 1 and 2 take roughly 45 minutes each to complete. Exercise 3 can be com-

pleted in approximately one and one-half hours.

Most students will not be able to complete all the In-lab exercises within a typical closed labora-

tory period. A range of exercises has been provided so that you can select those that best suit

your laboratory environment and your students’ needs.

Postlab

The last phase of each laboratory is a homework assignment that is done following the labora-

tory period. In the Postlab, students analyze the efficiency or utility of a given data structure.

Each Postlab exercise should take roughly 20 minutes to complete.

Using the Four-Part Organization in Your Laboratory Environment

Computer science instructors use the term laboratory to denote a broad range of environments.

One group of students in a data structures course, for example, might attend a closed two-hour

laboratory; at the same time, another group of students might take the class in a televised for-

mat and “attend” an open laboratory. This manual has been developed to create a laboratory

format suitable for a variety of open and closed laboratory settings. How you use the four-part

organization depends on your laboratory environment.

Two-Hour Closed Laboratory

Prelab Students attending a two-hour closed laboratory are expected to make a good-faith effort

to complete the Prelab exercise before coming to the lab. Their work need not be perfect, but

their effort must be real (roughly 80 percent correct).

Bridge Students are asked to complete the test plans included in the Bridge exercise and to

begin testing and debugging their Prelab work prior to coming to lab (as part of the 80 percent

correct guideline).

In-lab The first hour of the laboratory period can be used to resolve any problems the students

might have experienced in completing the Prelab and Bridge exercises. The intent is to give

constructive feedback so that students leave the lab with working Prelab software - a significant

accomplishment on their part.

During the second hour, students complete one of the In-lab exercises to reinforce the concepts

learned in the Prelab. You can choose the exercise by section or by student, or you can let the

students decide which one to complete.

Students leave the lab having received feedback on their Prelab and In-lab work. You need not

rigidly enforce the hourly divisions; a mix of activities keeps everyone interested and moti-

vated.

PREFACE

viii

Postlab After the lab, the students complete one of the Postlab exercises and turn it in during

their next lab period.

One-hour Closed Laboratory

Prelab If there is only one hour for the closed laboratory, students are asked to complete both

the Prelab and Bridge exercises before they come to the lab. This work is turned in at the start

of the period.

In-lab During the laboratory period, the students complete one of the In-lab exercises.

Postlab Again, the students complete one of the Postlab exercises and submit it during their

next lab period.

Open Laboratory

In an open laboratory setting, the students are asked to complete the Prelab and Bridge exer-

cises, one of the In-lab exercises, and one of the Postlab exercises. You can stagger the submis-

sion of these exercises throughout the week or have students turn in the entire laboratory as a

unit.

ADAPTING THE MANUAL TO YOUR COURSE

Student preparation

This manual assumes that students have a background in C, C++, or Java. The first laboratory

introduces the use of classes to implement a simple ADT. Succeeding laboratories introduce

more complex Java language features (abstract window toolkit, cloning, inheritance, and so

forth) in the context of data structures that use these features.

Order of Topics

Each of us covers the course material in the order that we believe best suits our students’ needs.

To give instructors flexibility in the order of presentation, the individual laboratories have been

made as independent of one another as possible. It is recommended that you begin with the fol-

lowing sequence of laboratories.

Laboratory 1 (Logbook ADT)

Introduces the implementation of an ADT using a built-in Java class

Laboratory 2 (Point List ADT) or Laboratory 3 (String ADT)

Introduces tokenized input and the use of the abstract window toolkit

Laboratory 4 (Array Implementation of the List ADT)

Introduces use of a Java interface

Laboratory 5 (Stack ADT)

Introduces linked lists

PREFACE

ix

You might wonder why the performance evaluation laboratory is near the end of the manual

(Laboratory 15). The reason is simple: everyone covers this topic at a different time. Rather

than bury it in the middle of the manual, it is near the end so that you can include it where it

best serves your and your students’ needs (I do it toward the end of the semester, for instance).

Since it is important to introduce students to problems that are broad in scope, Laboratory 16

is a multi-week programming project in which students work in teams to solve a more open-

ended problem. This laboratory gives students practice in using widely accepted object-ori-

ented analysis and design techniques. It also gives students some experience with HTML which,

like Java, is another common component of web page development. During the first week, each

team analyzes a problem in terms of objects and then develops a design for the problem. During

the second week, they create and test an implementation based on their design.

Laboratory 16 begins by walking students through the design and implementation of a simple

child’s calculator program. The software development framework used in this example stresses

object-oriented design and programming, iterative code development, and systematic testing.

The students then apply this framework to the solution of a more challenging—and more inter-

esting—problem. This laboratory exercise aids in structuring the dynamics of the team software

development process; however, it can also be assigned as an individual project simply by giving

the students more time to complete the project.

ADT Implementation

The laboratories are designed to complement a variety of approaches to implementing each

ADT. All ADT definitions stress the use of data abstraction and generic data elements. As a

result, you can adapt them with minimal effort to suit different implementation strategies.

For each ADT, class definitions that frame an implementation of the ADT are given as part of

the corresponding Prelab exercise. This definition framework is also used in the visualization

method that accompanies the laboratory. Should you elect to adopt a somewhat different imple-

mentation strategy, you need only make minor changes to the data members in the class defini-

tions and corresponding modifications to the visualization routine. You do not need to change

anything else in either the supplied software or the laboratory text itself.

Differences between the Manual and Your Text

Variations in style between the approaches used in the textbook and the laboratory manual dis-

courage students from simply copying material from the textbook. Having to make changes,

however slight, encourages students to examine in more detail how a given implementation

works.

Combining the Laboratories with Programming Projects

One goal in the design of these laboratories was to enable students to produce code in the labo-

ratory that they can use again as part of larger, more applications-oriented programming

PREFACE

x

projects. The ADTs the students develop in the Prelab exercises provide a solid foundation for

such projects. Reusing the material that they created in a laboratory frees students to focus on

the application they are developing. More important, they see in concrete terms—their time

and effort—the value of such essential software engineering concepts as code reuse, data

abstraction, and object-oriented programming.

The last exercise in each In-lab is an applications problem based on the material covered in the

Prelab for that laboratory. These exercises provide an excellent starting point for programming

projects. Free-form projects are also possible. The projects directory in the Instructor’s files

contains a set of programming projects based on the ADTs developed in the laboratories.

Student Files

Challenging students is easy; helping them to meet a challenge is not. The Student Source Code

for this manual is available at http://www.oodatastructures.jbpub.com. It includes a set of soft-

ware tools that assist students in developing ADT implementations. The tools provide students

with the means for testing an ADT implementation using simple keyboard commands and for

visualizing the resulting data structure using ASCII text on a standard text display. Additional

files containing data, partial solution shells, and other supporting routines are also included at

this site.

Instructor’s Files

Instructor’s support is available on request from Jones and Bartlett Publishers at

http://www.oodatastructures.jbpub.com. This material contains solutions to all the Prelab and

In-lab exercises, as well as a set of programming projects compatible with the laboratories in

this manual. Contact your sales representative at 800-832-0034 to obtain a password to this

site.

ACKNOWLEDGMENTS

I would like to thank my editors at Jones and Bartlett, Michael Stranz and Amy Rose, for their

assistance in guiding this project to completion.

I am also grateful to the students in my Fundamentals of Data Structures II course at Concordia

College-Moorhead, MN, who helped me class-test many of these laboratory exercises. Their

comments and suggestions have improved the quality of the final version of these laboratories.

Finally, I owe a debt of thanks to my husband Don for his patience and support while I was

working on this project.

S.A.

TEAMFL
Y

Team-Fly®

xi

Contents

Laboratory 1 Logbook ADT 1

Focus: Implementing an ADT using a Java class

Application: Generating a calendar display

Prelab Exercise 7

Bridge Exercise 13

In-lab Exercise 1 15

In-lab Exercise 2 17

In-lab Exercise 3 19

Postlab Exercise 1 21

Postlab Exercise 2 22

Laboratory 2 Point List ADT 23

Focus: Array implementation of a point list

Application: Displaying a dragon curve

Prelab Exercise 29

Bridge Exercise 34

In-lab Exercise 1 37

In-lab Exercise 2 39

In-lab Exercise 3 43

Postlab Exercise 1 45

Postlab Exercise 2 46

Laboratory 3 String ADT 47

Focus: Java’s built-in String class

Application: Lexical analysis

Prelab Exercise 55

Bridge Exercise 57

In-lab Exercise 1 61

In-lab Exercise 2 65

In-lab Exercise 3 70

Postlab Exercise 1 73

Postlab Exercise 2 74

CONTENTS

xii

Laboratory 4 Array Implementation of the List ADT 77

Focus: Array implementation of a list

Application: Analyzing DNA sequences

Prelab Exercise 85

Bridge Exercise 88

In-lab Exercise 1 92

In-lab Exercise 2 94

In-lab Exercise 3 96

Postlab Exercise 1 99

Postlab Exercise 2 101

Laboratory 5 Stack ADT 103

Focus: Array and singly linked list implementations of a stack

Application: Evaluating postfix arithmetic expressions

Prelab Exercise 109

Bridge Exercise 114

In-lab Exercise 1 116

In-lab Exercise 2 117

In-lab Exercise 3 120

Postlab Exercise 1 125

Postlab Exercise 2 128

Laboratory 6 Queue ADT 129

Focus: Array and singly linked list implementations of a queue

Application: Simulating the flow of customers through a line

Prelab Exercise 135

Bridge Exercise 138

In-lab Exercise 1 140

In-lab Exercise 2 142

In-lab Exercise 3 144

Postlab Exercise 1 147

Postlab Exercise 2 148

Laboratory 7 Singly Linked List Implementation of the List ADT 149

Focus: Singly linked list implementation of a list

Application: Slide show program

Prelab Exercise 155

Bridge Exercise 157

CONTENTS

xiii

In-lab Exercise 1 160

In-lab Exercise 2 162

In-lab Exercise 3 164

Postlab Exercise 1 167

Postlab Exercise 2 169

Laboratory 8 Doubly Linked List Implementation of the List ADT 171

Focus: Circular doubly linked list implementation of a list

Application: Anagram puzzle

Prelab Exercise 177

Bridge Exercise 179

In-lab Exercise 1 181

In-lab Exercise 2 183

In-lab Exercise 3 186

Postlab Exercise 1 189

Postlab Exercise 2 191

Laboratory 9 Ordered List ADT 193

Focus: Array implementation of an ordered list using inheritance

Application: Assembling messages in a packet switching network

Prelab Exercise 199

Bridge Exercise 203

In-lab Exercise 1 205

In-lab Exercise 2 207

In-lab Exercise 3 209

Postlab Exercise 1 211

Postlab Exercise 2 213

Laboratory 10 Recursion with Linked Lists 215

Focus: Using recursion to process and restructure linked lists

Application: Replacing recursion with iteration

Prelab Exercise 223

Bridge Exercise 234

In-lab Exercise 1 238

In-lab Exercise 2 242

In-lab Exercise 3 244

Postlab Exercise 1 247

Postlab Exercise 2 248

CONTENTS

xiv

Laboratory 11 Expression Tree ADT 249

Focus: Linked implementation of an expression tree

Application: Logic circuits

Prelab Exercise 257

Bridge Exercise 259

In-lab Exercise 1 261

In-lab Exercise 2 264

In-lab Exercise 3 266

Postlab Exercise 1 271

Postlab Exercise 2 273

Laboratory 12 Binary Search Tree ADT 275

Focus: Linked implementation of a binary search tree

Application: Indexed accounts database

Prelab Exercise 281

Bridge Exercise 283

In-lab Exercise 1 285

In-lab Exercise 2 287

In-lab Exercise 3 289

Postlab Exercise 1 295

Postlab Exercise 2 296

Laboratory 13 Heap ADT 299

Focus: Array implementation of a heap

Application: Simulating the flow of tasks in an operating system using a priority queue

Prelab Exercise 307

Bridge Exercise 309

In-lab Exercise 1 311

In-lab Exercise 2 313

In-lab Exercise 3 318

Postlab Exercise 1 323

Postlab Exercise 2 324

Laboratory 14 Weighted Graph ADT 325

Focus: Adjacency matrix implementation of the Weighted Graph ADT

Application: Computation of shortest paths

Prelab Exercise 331

Bridge Exercise 334

CONTENTS

xv

In-lab Exercise 1 336

In-lab Exercise 2 339

In-lab Exercise 3 342

Postlab Exercise 1 347

Postlab Exercise 2 349

Laboratory 15 Performance Evaluation 351

Focus: Determining execution times

Application: Analyzing the execution times of sorting and searching routines

Prelab Exercise 357

Bridge Exercise 358

In-lab Exercise 1 360

In-lab Exercise 2 363

In-lab Exercise 3 366

Postlab Exercise 1 369

Postlab Exercise 2 370

Laboratory 16 Team Software Development Project 373

Focus: Object-oriented analysis and design techniques

Application: Create a program that generates an HTML noteboard consisting of a set

of monthly calendars and associated notes

Week 1: Prelab Exercise 1 375

Week 1: Prelab Exercise 2 382

Week 1: Bridge Exercise 390

Week 1: In-lab Exercise 397

Week 2: In-lab Exercise 404

Postlab Exercise 407

1

LABORATORY 11

Logbook ADT
OBJECTIVES

In this laboratory, you

• examine the components that form an abstract data type (ADT) in Java.

• implement a programmer-defined ADT in Java.

• create a method that displays a logbook in calendar form.

• investigate how to overload methods in Java.

OVERVIEW

Because it is a pure object-oriented programming language, all Java programs contain one or

more class (or ADT) definitions. Java defines many built-in classes and hundreds of methods.

The purpose of this laboratory is for you to review how you can implement an abstract data

type (ADT) of your own design while utilizing some of the built-in ADTs already implemented in

Java. We use a monthly logbook as our example ADT. A monthly logbook consists of a set of

entries, one for each day of the month. Depending on the logbook, these entries might denote a

business’s daily receipts, the amount of time a person spent exercising, the number of cups of

coffee consumed, and so forth. A typical logbook is shown below.

When specifying an ADT, you begin by describing the elements (or attributes) that the ADT

consists of. Then you describe how these ADT elements are organized to form the ADT’s overall

structure. In the case of the monthly logbook abstract data type—or Logbook ADT, for short—

the elements are the entries associated with the days of the month and the structure is linear:

February 2002

1 100 2 95

3 90 4 0 5 150 6 94 7 100 8 105 9 100

10 100 11 50 12 110 13 110 14 100 15 125 16 110

17 0 18 110 19 0 20 125 21 100 22 110 23 115

24 111 25 0 26 50 27 110 28 125

LABORATORY 1

2

the entries are arranged in the same order as the corresponding days. In Java these elements

are called the data members of the ADT (or class).

Having specified the ADT’s data members, you then define its behavior by specifying the opera-

tions that are associated with the ADT. For each operation, you specify what conditions must be

true before the operation can be applied (its requirements or precondition) as well as what con-

ditions will be true once the operation has completed (its results or postcondition). The Log-

book ADT specification below includes operations (or methods in Java) that create a logbook

for a given month, store/retrieve the logbook entry for a specific day, and provide general infor-

mation about the month.

Logbook ADT

Elements

A set of integer values for a logbook month and its associated calendar.

Structure

Each integer value is the logbook entry for a given day of the month. The number of logbook

entries varies depending on the month for which data is being recorded. We will refer to this

month as the logbook month. Each logbook month is actually a calendar month for a particular

year. Thus each logbook month starts on a particular day of the week and has a fixed number of

days in that month based on our Gregorian calendar.

Constructor

Logbook (int month, int year)

Precondition:

Month is a valid calendar month between 1 and 12 inclusive.
Postcondition:

Constructor. Creates an empty logbook for the specified month—that is, a logbook in which

all the entries are zero. If month is an invalid value, it will default to today’s date.

LABORATORY 1

3

Methods

void putEntry (int day, int value)

Precondition:

Day is less than or equal to the number of days in the logbook month.
Postcondition:

Stores the value as the logbook entry for the specified day.

int getEntry (int day)

Precondition:

Day is less than or equal to the number of days in the logbook month.
Postcondition:

Returns the logbook entry for the specified day or �1 if there is no such day.

int month ()

Precondition:

None.
Postcondition:

Returns the logbook month.

int year ()

Precondition:

None.
Postcondition:

Returns the logbook year.

int daysInMonth ()

Precondition:

None.
Postcondition:

Returns the number of days in the logbook month.

LABORATORY 1

5

LABORATORY 1: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total TEAMFL
Y

Team-Fly®

LABORATORY 1

7

LABORATORY 1: Prelab Exercise

Name

Hour/Period/Section

Date

The Logbook ADT specification provides enough information for you (or other programmers) to

design and develop programs that use logbooks. Before you can begin using logbooks in your

Java programs, however, you must first create a Java implementation of the Logbook ADT.

You saw in the Overview that an ADT consists of a set of elements and a set of operations that

manipulate those elements. A Java class usually consists of a set of data members (or elements)

and a set of member methods (or operations) that manipulate the data members. Thus, classes

are a natural means for implementing ADTs.

How do you create a definition for a Logbook class from the specification of the Logbook ADT?

You begin with the ADT elements and structure. The Logbook ADT specification indicates that

you must maintain the following information about each logbook:

• the (month, year) pair that specify a particular logbook month

• the array of logbook entries for the month

• a calendar facility primarily for determining leap years and day-of-week on which the first

day of the month falls

This information is stored in the data members of the Logbook class. The month and year are

stored as integer values, the entries are stored as an array of integers, and the calendar facility

will be based on Java’s built-in GregorianCalendar class, which is derived (or inherited) from

Java’s Calendar class. We won’t go into all the details of inheritance at this time, but because the

GregorianCalendar class inherits from the Calendar class, an instance of the GregorianCalendar

class can use all public and protected methods and variables in the Calendar class. This illus-

trates one big advantage of object-oriented programming—the ability to reuse existing ADTs

instead of always writing your own.

class Logbook
{
 // Data members
 private int logMonth, // Logbook month
 logYear; // Logbook year
 private int[] entry = new int[31]; // Array of Logbook entries
 private GregorianCalendar logCalendar; // Java’s built-in Calendar class
}

LABORATORY 1

8

By declaring the data members to be private, you prevent nonmember methods—that is, meth-

ods that are not members of the Logbook class—from accessing the logbook data directly. This

restriction ensures that all references to the logbook data are made using the operations (or

methods) in the Logbook ADT.

Having specified how the logbook data is to be stored, you then add definitions for the member

methods corresponding to the operations in the Logbook ADT. These methods are declared as

public. They can be called by any method—either member or nonmember—and provide a pub-

lic interface to the logbook data. An incomplete definition for the Logbook ADT is given below.

Note that it lacks implementation code for the class methods.

class Logbook
{
 // Data members
 private int logMonth, // Logbook month
 logYear; // Logbook year
 private int[] entry = new int[31]; // Array of Logbook entries
 private GregorianCalendar logCalendar; // Java’s built-in Calendar class

 // Constructor
 public Logbook (int month, int year) // Create a logbook
 { }

 // Logbook marking operations/methods
 public void putEntry (int day, int value) // Store entry for day
 { }
 public int getEntry (int day) // Return entry for day
 { }

 // General operations/methods
 public int month () // Return the month
 { }
 public int year () // Return the year
 { }
 public int daysInMonth () // Number of days in month
 { }

} // class Logbook

You need to know whether a given year is a leap year in order to determine the number of

days in the month of February. To determine this information, a facilitator method (or helper

method) has been added to the definition of the Logbook class. Note that the facilitator

method is not an operation listed in the specifications for the Logbook ADT. Thus, it is

included as a private member method rather than as part of the public interface. This facilita-

tor method leapYear() can be implemented as follows using the built-in GregorianCalendar

method for the Logbook class data member logCalendar.

return (logCalendar.isLeapYear(logYear));

Our current version of the incomplete definition for the Logbook class is shown as follows.

Notice this version includes Java import statements for each of the built-in packages being used

by the Logbook class. This incomplete definition is stored in the file Logbook.jshl.

LABORATORY 1

9

import java.io.*; // For reading (keyboard) & writing (screen)
import java.util.*; // For GregorianCalendar class

class Logbook
{
 // Data members
 private int logMonth, // Logbook month
 logYear; // Logbook year
 private int[] entry = new int[31]; // Array of Logbook entries
 private GregorianCalendar logCalendar; // Java’s built-in Calendar class

 // Constructor
 public Logbook (int month, int year) // Create a logbook
 { }

 // Logbook marking operations/methods
 public void putEntry (int day, int value) // Store entry for day
 { }
 public int getEntry (int day) // Return entry for day
 { }

 // General operations/methods
 public int month () // Return the month
 { }
 public int year () // Return the year
 { }
 public int daysInMonth () // Number of days in month
 { }

 // Facilitator (helper) method
 private boolean leapYear () // Leap year?
 { }

} // class Logbook

This incomplete Logbook class definition provides a framework for the Logbook class. You are

to fill in the Java code for each of the constructors and methods where the implementation

braces are empty, or only partially filled (noted by “add code here …”). For example, an imple-

mentation of the month() method is given below.

public int month ()
// Precondition: None.
// Postcondition: Returns the logbook month.
{
 return logMonth;
}

As you complete the class definition for the Logbook ADT in the file Logbook.jshl, save your

implementation of the member methods in the file Logbook.java.

LABORATORY 1

10

The code in the file Logbook.java forms a Java implementation of the Logbook ADT. The follow-

ing applications program uses the Logbook ADT to record and output a set of logbook entries.

Note that this program is stored in its own file called Coffee.java.

import java.io.*;

class Coffee
{
 // Records coffee intake for January 2002.
 public static void main (String args[]) throws IOException
 {
 int day; // Day loop counter

 // Coffee intake for January 2002
 Logbook coffee = new Logbook(1, 2002);

 // Record entries for the 1st and 15th of January 2002
 coffee.putEntry(1, 5);
 coffee.putEntry(15, 2);

 // Output the logbook entries.
 System.out.println("Month/Year : " + coffee.month() + "/" + coffee.year());
 for (day = 1 ; day <= coffee.daysInMonth() ; day++)
 System.out.println(day + " : " + coffee.getEntry(day));
 } // main()

} // class Coffee

The statement

Logbook coffee = new Logbook(1, 2002);

invokes the Logbook class constructor to create a logbook for January 2002. Notice that in Java

each instance (or object) of a class is created by using the new operator. In this case coffee is an

instance of the Logbook class. As implemented, the constructor begins by verifying that a valid

month value has been received. Then the constructor creates a new logCalendar for January 1,

2001 and sets the logMonth to 1 and logYear to 2002. You can use the assignment operator to

perform this task, as in the following code fragment.

public Logbook (int month, int year)
// Constructs an empty logbook for the specified month and year.
// Note: Unlike mankind, Java’s built-in Calendar numbers months
// from January = 0
{
 int j; // Loop counter

 // Verify that a valid month value was entered
 // If not, setup logbook for today’s date

 else
 {
 // Assumes a default DAY_OF_MONTH as first day of month
 logCalendar = new GregorianCalendar(year, month �1, 1);

LABORATORY 1

11

 logMonth = month;
 logYear = year;
 }

 // Set each entry in the logbook to 0.

}

Note that Java’s GregorianCalendar class numbers the months starting with 0 for January

through 11 for December. Since people usually number the calendar months starting with 1 for

January through 12 for December, during the execution of the coffee program logMonth is

assigned the value 1 for January, and the month value for the GregorianCalendar constructor is

adjusted accordingly by setting the month parameter to month �1. Once the constructor has

created the logCalendar and assigned values to logMonth and logYear, it sets each element in

the entry array to 0 and returns.

A side note: In-lab Exercise 2 will provide more information on how to create a logbook that

defaults to today’s date. For now you may want to simply implement the error-handling part of

this constructor (when the month value is not between 1 and 12, inclusive) by picking arbitrary

default values for logMonth and logYear.

Having constructed an empty logbook, the coffee program then uses the putEntry() method to

record a pair of logbook entries for the first and fifteenth of January. It then outputs the logbook

using repeated calls to the getEntry() method, with the month() and year() methods providing

output headings.

Step 1: Implement the member methods in the Logbook class. Base your implementation on

the incomplete Logbook class definition given earlier (and in the file Logbook.jshl).

Step 2: Save your implementation of the Logbook ADT in the file Logbook.java. Be sure to

document your code.

LABORATORY 1

13

LABORATORY 1: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

Test your implementation of the Logbook ADT using the program in the file TestLogbook.java.

This program supports the following tests.

Step 1: Complete the test plan for Test 1 by filling in the expected number of days for each

month.

Step 2: Test your implementation of the Logbook ADT in the file Logbook.java by compiling

and running your test program TestLogbook.java.

Step 3: Execute the test plan. If you discover mistakes in your implementation of the Logbook

ADT, correct them and execute the test plan again.

Test Action

1 Tests the constructor and the month, year, and daysInMonth operations.

2 Tests the putEntry and getEntry operations.

Test case Logbook month No. days in month Checked

Simple month 1 2002 31

Month in the past 7 1998

Month in the future 12 2008

Current month

February (not leap year) 2 1999

February (leap year) 2 2000

An invalid month 13 2002

Test Plan for Test1 (constructor, month, year, and daysInMonth Operations)

LABORATORY 1

14

Step 4: Complete the test plan for Test 2 by filling in the input data and expected result for

each test case. Use a logbook for the current month.

Step 5: Execute the test plan. If you discover mistakes in your implementation of the Logbook

ADT, correct them and execute the test plan again.

Test case Logbook entries Expected result Checked

Record entries for the first

and fifteenth of the month

2 100
15 200

Record entries for the first

and last day of the month

Record entries for all the

Fridays in the month

Change the entry for the first

day

1 100
1 300

Test Plan for Test2 (putEntry and getEntry Operations)

LABORATORY 1

15

LABORATORY 1: In-lab Exercise 1

Name

Hour/Period/Section

Date

The entries in a logbook store information about a specific month. A calendar provides a natu-

ral format for displaying this monthly data. That is why the GregorianCalendar class was conve-

niently included as a data member in the Logbook class: namely, the data member logCalendar.

void displayCalendar ()

Precondition:

None.
Postcondition:

Outputs a logbook using the calendar format shown below. Note that each calendar entry

includes the logbook entry for the corresponding day.

In order to produce a calendar for a given month, you need to know on which day of the week

the first day of the month occurs. To do so you will need to implement the facilitator method

dayOfWeek() described below.

int dayOfWeek (int day)

Input parameter:

Day is a specific day in the logbook month.
Returns:

An integer denoting the day of the week on which the specified day occurs, where 0 corre-

sponds to Sunday, 1 to Monday, and so forth.

2 / 2002

Sun Mon Tue Wed Thu Fri Sat

1 100 2 95

3 90 4 0 5 150 6 94 7 100 8 105 9 100

10 100 11 50 12 110 13 110 14 100 15 125 16 110

17 0 18 110 19 0 20 125 21 100 22 110 23 115

24 111 25 0 26 50 27 110 28 125

TEAMFL
Y

Team-Fly®

LABORATORY 1

16

First, you will need to set the logbook calendar to the day of the month specified by the input

parameter for this facilitator method. To do so you may use the following method call for the

GregorianCalendar class object (logCalendar).

logCalendar.set(logYear, logMonth �1, day);

Then the day of the week corresponding to the current logbook’s logCalendar month/day/year

can be found using the following method.

logCalendar.get(Calendar.DAY_OF_WEEK);

This method returns a value between 1 (Sunday) and 7 (Saturday). As noted in the description

of the dayOfWeek() method given above, we would prefer that the value returned be between 0

(Sunday) and 6 (Saturday). So, you will need to adjust the returned value similar to the way the

month parameter was adjusted for the creation of logCalendar in the Logbook constructor.

Step 1: Implement the facilitator method dayOfWeek() described above and add it to the file

Logbook.java. This method is included in the incomplete definition of the Logbook class in the

file Logbook.jshl.

Step 2: Implement the displayCalendar() method described above and add it to the file Log-

book.java. This method is included in the incomplete definition of the Logbook class in the file

Logbook.jshl.

Step 3: Activate Test 3 in the test program TestLogbook.java by removing the comment

delimiter (and the character “3”) from the lines that begin with “//3”.

Step 4: Complete the test plan for Test 3 by filling in the day of the week for the first day of

the current month.

Step 5: Execute the test plan. If you discover mistakes in your implementation of the display-

Calendar operation, correct them and execute the test plan again.

Test case Logbook month
Day of the week of the
first day in the month Checked

Simple month 1 2000 6 (Saturday)

Month in the past 7 1998 3 (Wednesday)

Month in the future 12 2008 1 (Monday)

Current month

February (not leap year) 2 2002 5 (Friday)

February (leap year) 2 2000 2 (Tuesday)

Test Plan for Test3 (displayCalendar Operation)

LABORATORY 1

17

LABORATORY 1: In-lab Exercise 2

Name

Hour/Period/Section

Date

Java allows you to create multiple methods with the same name so long as these methods have

different numbers of arguments or different types of arguments—a process referred to as

method overloading. The following Logbook ADT operations, for example, each shares the

same name as an existing operation. They have fewer arguments than the existing operations,

however. Instead of using an argument to specify the month/year (or day) to process, they use

the current month/year (or day).

Logbook ()

Precondition:

None.
Postcondition:

Default constructor. Creates an empty logbook for the current month/year.

void putEntry (int value)

Precondition:

Logbook is for the current month/year.
Postcondition:

Stores the value as the logbook entry for today.

The default constructor for the built-in GregorianCalendar class creates a Calendar object for

today’s date. Then using the method get as we did in dayOfWeek() we can assign the correct

value to logYear as follows.

logYear = logCalendar.get(Calendar.YEAR);

In a similar manner we can assign the correct value to logMonth using the parameter

Calendar.MONTH. Also, Calendar.DAY_OF_MONTH contains today’s day value for use in the over-

loaded method putEntry().

LABORATORY 1

18

Step 1: Implement these operations and add them to the file Logbook.java. Each method is

included in the incomplete definition of the Logbook class in the file Logbook.jshl.

Step 2: Activate Test 4 in the test program TestLogbook.java by removing the comment

delimiter (and the character “4”) from the lines that begin with “//4”.

Step 3: Complete the test plan for Test 4 by filling in the expected result for each operation.

Step 4: Execute the test plan. If you discover mistakes in your implementation of these opera-

tions, correct them and execute the test plan again.

Test case Expected result Checked

Construct a logbook for the

current month

Number of days in the current month:

Record an entry for today Day on which entry is made:

Test Plan for Test4 (Overloaded Methods)

LABORATORY 1

19

LABORATORY 1: In-lab Exercise 3

Name

Hour/Period/Section

Date

What if we want to add the entries in several logbooks together to find a grand total of daily

entries for a particular month? For instance, the code fragment on this page illustrates how we

might add the daily entries in a logbook of citySales to the entries in a logbook of suburbSales to

give us a logbook of daily salesTotals for the month of September, 2002. The following describes

a method that will add the corresponding daily entries in two logbooks.

void plus (Logbook rightBook)

Precondition:

The logbooks cover the same month/year.
Postcondition:

Adds each entry in rightBook to the corresponding entry in this logbook.

The following code fragment uses this operation to sum a pair of logbooks and then outputs the

combined logbook entries.

Logbook citySales = new Logbook(9, 2002), // City sales
 suburbSales = new Logbook(9, 2002), // Suburban sales
 salesTotals = new Logbook(9, 2002); // Combined sales for September 2002
int j; // Loop counter

// Read in the city and suburban sales.
...

// Sum the city and suburban sales.
salesTotals.plus(citySales); // Include city sales
salesTotals.plus(suburbSales); // Include suburban sales

// Output the sum.
salesTotals.displayCalendar();

Step 1: Implement the plus() operation and add it to the file Logbook.java. This method is

included in the incomplete definition of the Logbook class in the file Logbook.jshl.

Step 2: Activate Test 5 in the test program TestLogbook.java by removing the comment delim-

iter (and the character “5”) from the lines that begin with “//5”.

LABORATORY 1

20

Step 3: Complete the test plan for Test 5 by filling in the expected result. Use a logbook for the

current month.

Step 4: Execute the test plan. If you discover mistakes in your implementation of the logbook

addition operation, correct them and execute the test plan again.

Test case Expected result of adding logDay200
to logDay100

Checked

The entries in logbook

logDay100 are equal to

(100 * day) and the entries

in logbook logDay200 are

equal to (200 * day)

Test Plan for Test5 (plus Operation)

LABORATORY 1

21

LABORATORY 1: Postlab Exercise 1

Name

Hour/Period/Section

Date

Part A

In our implementation of Logbook, the facilitator method leapYear() uses the built-in

GregorianCalendar class method isLeapYear(). This is possible because the Logbook

class contains a data member from the GregorianCalendar class. If there were no Gregori-

anCalendar (logCalendar) data member in the Logbook class, how would you implement

Logbook’s leapYear() method?

private boolean leapYear () // Leap year?
{

}

Part B

In terms of time and space, what is the cost of defining the data member logCalendar to

implement leapYear()?

In terms of time and space, what is the cost (or savings) of implementing leapYear() with-

out declaring the GregorianCalendar class data member logCalendar?

22

LABORATORY 1

LABORATORY 1: Postlab Exercise 2

Name

Hour/Period/Section

Date

Part A

In our implementation of Logbook the facilitator method dayOfWeek() uses several built-in

GregorianCalendar class methods to return the correct value. This is possible because the

Logbook class has a data member from the GregorianCalendar class. If there were no Gre-

gorianCalendar (logCalendar) data member, how would you implement dayOfWeek()?

private int dayOfWeek (int day)
// Returns the day of the week corresponding to the specified day.
{

}

Part B

What is gained/lost by implementing dayOfWeek() without using the GregorianCalendar

data member?

23

LABORATORY 22

Point List ADT

OBJECTIVES

In this laboratory, you

• implement a list of points using an array representation of a list—including development of

an iteration scheme that allows you to move through a list element by element.

• use the new operator to dynamically allocate memory and rely on automatic garbage collec-

tion to deallocate memory.

• use a Java tokenizer to read data from the keyboard input stream.

• display a curve represented by a point list using Java’s AWT (abstract window toolkit).

OVERVIEW

The list is perhaps the most commonly used data structure. Just think how often you make lists

of things to do, places to be, and so on. The defining property of a list is that the elements are

organized linearly—that is, every element has one element immediately before it and another

immediately after it (except, of course, the elements at the beginning and end of the list).

In this laboratory, you explore lists in which each element is a two-dimensional point—or (x,y)

pair. We refer to this type of list as a point list. Point lists are routinely used in computer graph-

ics, computer-aided design (CAD), and computer modeling to represent lines, curves, edges,

and so forth.

The Point List ADT described below provides operations that allow you to add points to a list,

check the state of a list (Is it empty? or Is it full?), and iterate through the points in a list. Itera-

tion is done using a cursor that you move through the list much as you move the cursor in a

text editor or word processor. In the following example, the Point List ADT’s gotoBeginning

operation is used to move the cursor to the beginning of the list. The cursor is then moved

through the list point by point, by repeated applications of the gotoNext operation. Note that

the point marked by the cursor is shown in bold.

After gotoBeginning: (0,0) (1,1) (2,2) (3,3)

After gotoNext: (0,0) (1,1) (2,2) (3,3)

After gotoNext: (0,0) (1,1) (2,2) (3,3)

After gotoNext: (0,0) (1,1) (2,2) (3,3)

LABORATORY 2

24

Point List ADT

Elements:

Each element in a point list is of type Point (a built-in Java class) and contains a pair of integers

that represent the point’s x- and y-coordinates. Once again, since the Point class is built into

Java, some of our object-oriented programming has already been done for us.

Structure:

The points form a linear structure in which points follow one after the other, from the beginning

of the list to its end. The ordering of the points is determined by the order in which they were

appended to the list. At any moment in time, one point in any nonempty list is marked using

the list’s cursor. You travel through the list using operations that change the position of the

cursor.

Constructors and their Helper Method

PointList ()

Precondition:

None.
Postcondition:

Default Constructor. Calls setup, which creates an empty list. Allocates enough memory for

a list containing DEF_MAX_LIST_SIZE (a constant value) points.

PointList (int maxNumber)

Precondition:

maxNumber > 0.
Postcondition:

Constructor. Creates an empty list. Allocates enough memory for a list containing maxNum-

ber points.

void setup(int size)

Precondition:

size > 0. A helper method for the constructors. Is declared private since only point list con-

structors should call this method.
Postcondition:

Creates an empty point list of a specific size based on the value of size received from the

constructor.

LABORATORY 2

25

Methods

void append (Point newPoint)

Precondition:

List is not full.
Postcondition:

Adds newPoint to the end of a list. If the list is empty, then adds newPoint as the first (and

only) point in the list. Moves the cursor to newPoint.

void clear ()

Precondition:

None.
Postcondition:

Removes all the points in a list.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a list is empty. Otherwise, returns false.

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a list is full. Otherwise, returns false.

boolean gotoBeginning ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the point at the beginning of the list and

returns true. Otherwise, returns false.

boolean gotoEnd ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the point at the end of the list and returns

true. Otherwise, returns false.

boolean gotoNext ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the end of a list, then moves the cursor to the next point in the list and

returns true. Otherwise, returns false.

TEAMFL
Y

Team-Fly®

LABORATORY 2

26

boolean gotoPrior ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the beginning of a list, then moves the cursor to the preceding point in

the list and returns true. Otherwise, returns false.

Point getCursor ()

Precondition:

List is not empty.
Postcondition:

Returns a copy of the point marked by the cursor.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the points in a list. If the list is empty, outputs “Empty list”. Note that this opera-

tion is intended for testing/debugging purposes only.

LABORATORY 2

27

LABORATORY 2: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 2

29

LABORATORY 2: Prelab Exercise

Name

Hour/Period/Section

Date

You can implement a list in many ways. Given that a list is linear and that all the list elements

are of the same type (in this case, the built-in class Point), an array seems a natural choice. You

could declare the size of the array at compile-time (as you did with the logbook array in Labora-

tory 1), but your Point List ADT will be more flexible if you specify the size of the array at run-

time and dynamically allocate the memory required to store it.

Memory allocation for the array is done by the constructor. The Point constructor is invoked

during the execution of the program. Once called, the PointList constructor allocates an array

of points using Java’s new operator. The statement below, for example, allocates memory for an

array of maxSize points. The variable name ptlist is the reference through which we have

access to this array of points.

Point ptlist = new Point[maxSize];

During program execution a variable reference can become inaccessible. Whenever a point

(ptlist) reference goes out of scope—that is, whenever the method containing the correspond-

ing variable declaration terminates—the ptlist variable is no longer accessible. In other words,

the program can no longer use the ptlist variable because it has gone out of scope. The mem-

ory allocated for ptlist may also become inaccessible through reassignment such as:

ptlist = new Point[10]; // First assignment

ptlist = new Point[8]; // Reassignment; first instance is inaccessible

When all references to a memory location have been lost, the memory location no longer serves

any useful purpose and is called garbage.

What happens to memory that was allocated for an instance variable such as the ptlist array

when all references to that memory location have been lost? Unlike object-oriented program-

ming languages such as C++ where the programmer must explicitly manage memory dealloca-

tion, Java has a built-in mechanism that finds unused memory and makes that memory

available for use to store new instances of other program variables. This process of returning

inaccessible memory to the available-memory (or free-storage) list is called garbage collection.

Since garbage collection is built-in and not directly controlled by the programmer, we say Java

has automatic garbage collection.

LABORATORY 2

30

There are tradeoffs between Java’s automatic garbage collection and programmer-controlled

memory deallocation that is used in other object-oriented programming languages. Automatic

garbage collection is slower, but it is less prone to programming errors and frees the program-

mer to focus on the implementation details of the problem at hand. However, garbage collection

actually occurs infrequently (if at all) during the execution of your Java program. In other

words, garbage collection does not occur the instant one or more objects become inaccessible.

Step 1: Implement the operations in the Point List ADT using an array to store the list of

points. Arrays have a limited capacity, which the programmer might store in a separate variable

such as maxSize. An important characteristic of arrays in Java is that the size of the array is held

in a constant called length in the array object. Therefore, in Java a separate variable (such as

maxSize) is not necessary, since the maximum number of elements our point list can hold can

be determined by referencing length—more specifically in our case, by referencing

ptlist.length. Lists change in size, therefore you need to store the actual number of points in

the list (size), along with the points themselves (ptlist). You also need to keep track of the cur-

sor array index (cursor). Base your implementation on the following incomplete definitions

from the built-in class Point and the file PointList.jshl.

//------------------------------ sketch of built-in class Point -------------------- //
//--------- (only the Point methods used in this Laboratory are shown here) -------- //
class Point
{
 // Data members
 // Point coordinates (can be accessed directly)
 public int x,
 y;

 // Constructors
 public Point ()
 // Default Constructor
 {
 x = 0;
 y = 0;
 }

 public Point (int x0, int y0)
 // Constructor
 {
 x = x0;
 y = y0;
 }

} // built-in class Point

// ------------------------------------PointList.jshl ------------------------------ //
class PointList
{
 // Default maximum list size — a constant
 public static final int DEF_MAX_LIST_SIZE = 10;

LABORATORY 2

31

 // Data members
 private int size, // Actual number of points in the list
 cursor; // Cursor index
 private Point ptlist[]; // Array containing the points

 // Constructors and helper method setup
 public PointList () // Constructor: default size
 { }
 public PointList (int maxNumber) // Constructor: specific size
 { }

 // Class methods
 private void setup(int size) // Called by constructors only
 { }

 // List manipulation operations/methods
 public void append (Point newPoint) // Append point to list
 { }
 public void clear () // Clear list
 { }

 // List status operations/methods
 public boolean isEmpty () // Is list empty?
 { }
 public boolean isFull () // Is list full?
 { }

 // List iteration operations
 public boolean gotoBeginning () // Go to beginning
 { }
 public boolean gotoEnd () // Go to end
 { }
 public boolean gotoNext () // Go to next point
 { }
 public boolean gotoPrior () // Go to prior point
 { }
 public Point getCursor () // Return point
 { }

 // Output the list structure—used in testing/debugging
 public void showStructure ()
 { }

} // class PointList

Step 2: Save your implementation of the Point List ADT in the file PointList.java. Be sure to

document your code.

The following code fragment (in the file SampPtList.java) reads data input from the keyboard

and uses the operations in the Point List ADT. The operations in the Point List ADT are used to

help construct a list of points as well as iterate through the list from beginning to end, output-

ting each point along the way.

LABORATORY 2

32

import java.io.*;

class SampPtList
{
 public static void main (String args[]) throws IOException
 {
 // Set of vertices for a polygon
 PointList polygon = new PointList();
 Point vertex; // Vertex

 //---
 // Initialize reader and tokenizer for the input stream -
 // for reading 'tokens' (namely point values)
 // input from the keyboard.
 //
 // Initialize reader - To read a character at a time
 InputStreamReader reader = new InputStreamReader(System.in);

 // Initialize the tokenizer -
 // To read tokens (words and numbers separated by whitespace)
 StreamTokenizer tokens = new StreamTokenizer(reader);

 // Note: Use the tokenizer's nextToken() method
 // to step through a stream of tokens.
 // Use the tokenizer's instance variable nval
 // to obtain the number read.
 // Since nval is of type double, cast it to an int
 // when reading points x and y (int)tokens.nval

 // Read in the polygon's vertices.
 System.out.print("Enter the polygon's vertices (end with eof) : ");

 // Keep reading as long as text (the word eof) has not been entered
 while (tokens.nextToken() != tokens.TT_WORD)
 {
 vertex = new Point(); // Create new Point
 vertex.x = (int)tokens.nval; // Assign x value of the point
 tokens.nextToken();
 vertex.y = (int)tokens.nval; // Assign y value of the point
 polygon.append(vertex); // Add to PointList's array of Points
 }

 // Output the vertices one per line.
 if (polygon.gotoBeginning()) // Go to beginning of list
 do
 {
 vertex = polygon.getCursor();
 System.out.println("(" + vertex.x + "," + vertex.y + ")");
 } while (polygon.gotoNext()); // Go to next point (if any)
 }

} // class SampPtList

LABORATORY 2

33

Using the code fragment above let’s review the set of Java statements needed to read data

from an input stream such as the keyboard. (A similar set of statements was also provided for

you in the file TestLogbook.java for Laboratory 1.) In Java the standard input stream—the

keyboard—is associated with the variable System.in. The following statement will create an

InputStreamReader connected to the keyboard input stream (System.in):

InputStreamReader reader = new InputStreamReader(System.in);

Next, insert a StreamTokenizer between this InputStreamReader and the program so that not

just a single character but an entire number or word can be read. To do so use a statement sim-

ilar to the following:

StreamTokenizer tokens = new StreamTokenizer(reader);

The StreamTokenizer treats whitespace characters as delimiters that divide character

sequences into tokens. The StreamTokenizer class has a nextToken method that returns the

next token (number or word) in the stream. Thus, use the following statement to read the next

token in the input stream:

tokens.nextToken();

The method nextToken returns the constant TT_WORD if the token of data read is a word of text,

or it returns the constant TT_NUMBER if the token read is numeric. The StreamTokenizer instance

provides two public data members, nval and sval. The data member nval contains the number

read if nextToken returned TT_NUMBER. If nextToken returned TT_WORD, the data member sval con-

tains the word read.

Our program keeps reading (numbers) until the user enters eof. Since the data to be processed

is numeric, the following statement reads the next token and checks to see if the user entered

text (or eof).

// Keep reading as long as text (the word eof) has not been entered
while (tokens.nextToken() != tokens.TT_WORD)

If nextToken does not return TT_WORD, then the (otherwise) numeric value is assigned to

vertex.x as follows:

vertex.x = (int)tokens.nval;

Since nval is of type double and vertex.x is an int, we cast nval to an int in the above state-

ment. In like manner we read and assign a value to vertex.y as follows:

tokens.nextToken();
vertex.y = (int)tokens.nval;

This series of statements for reading keyboard input can generally be used for reading keyboard

input in any Java program. You will be asked later in this laboratory to use commands similar to

these in your own program.

LABORATORY 2

34

LABORATORY 2: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program that you used in Laboratory 1 consisted of a series of tests that were hard-

coded into the program. Adding a new test case to this style of test program requires changing

the test program itself. In this laboratory, you use a more flexible kind of test program to evalu-

ate your ADT implementation, one in which you specify a test case using commands, rather

than code. This interactive, command-driven test program allows you to check a new test case

by simply entering a series of keyboard commands and observing the results.

The test program in the file TestPointList.java supports the following commands.

Command Action

+ x y Append point (x,y) to the end of the list.

@ Display the point marked by the cursor.

N Go to the next point.

P Go to the prior point.

< Go to the beginning of the list.

> Go to the end of the list.

E Report whether the list is empty.

F Report whether the list is full.

C Clear the list.

Q Quit the test program.

LABORATORY 2

35

Suppose you wish to confirm that your array implementation of the Point List ADT successfully

constructs a point list storing the vertices of a square. You can test this case by entering the fol-

lowing sequence of keyboard commands.

It is easy to see how this interactive test program allows you to rapidly examine a variety of test

cases. This speed comes with a price, however. You must be careful not to violate the precondi-

tions required by the operations that you are testing. For instance, the commands

cause the test program to fail during the call to the getCursor operation. The source of the fail-

ure does not lie in the implementation of the Point List ADT, nor is the test program flawed. The

failure occurs because this sequence of operations creates a state that violates the precondi-

tions of the getCursor operation (the list must not be empty when the getCursor operation is

invoked). The speed with which you can create and evaluate test cases using an interactive,

command-driven test program makes it very easy to produce this kind of error. It is very tempt-

ing to just sit down and start entering commands. A much better strategy, however, is to create

a test plan listing the test cases you wish to check and then to write out command sequences

that generate these test cases.

Step 1: Complete the test plan below by adding test cases that check whether your implemen-

tation of the Point List ADT correctly handles the following tasks:

• appending points to a list that has been cleared

• filling a list to its maximum size

• determining whether a list is empty

• determining whether a list is full

Assume that the output of one test case is used as the input to the following test case and note

that, although expected results are listed for the final command in each command sequence,

you should confirm that each command produces a correct result.

Step 2: Test your implementation of the Point List ADT by compiling and running your test

program TestPointList.java.

Command + 1 1 + 1 2 + 2 2 + 2 1 Q

Action Append (1,1) Append (1,2) Append (2,2) Append (2,1) Quit

Command C @

Action Clear list Error

TEAMFL
Y

Team-Fly®

LABORATORY 2

36

Step 3: Execute your test plan. If you discover mistakes in your implementation of the Point

List ADT, correct them and execute your test plan again.

Test case Commands Expected result Checked

Append a series of points + 1 2
+ 3 4
+ 5 6
+ 7 8

(1,2) (3,4) (5,6) (7,8)

Iterate from the beginning < N N (1,2) (3,4) (5,6) (7,8)

Iterate from the end > P P (1,2) (3,4) (5,6) (7,8)

Display the point marked by

the cursor

@ (3,4)

Clear the list C Empty list

Note: The point marked by the cursor is shown in bold.

Test Plan for the Operations in the Point List ADT

LABORATORY 2

37

LABORATORY 2: In-lab Exercise 1

Name

Hour/Period/Section

Date

As we noted in the Overview, point lists are commonly used in computer graphics to represent

curves. Rather than storing all the points required to display a curve at a given level of detail—

an approach that would require massive amounts of storage—only selected points are stored in

the list. These points are then connected by line segments when the curve is displayed (as in

the “connect the dots” game). The figure below shows a circle centered at (2, 2) with radius 1,

its point list representation, and the resulting display.

Note that we have sacrificed some of the smoothness of the circle by approximating it using

only nine points (with one point repeated so that the curve is closed). We could produce a much

smoother circle by dividing the circle into smaller pieces.

Step 1: Using the shell in the file DrawCurv.jshl as a basis, create a program that displays the

points in a point list. (Segments that are commented with the label ‘graphics:’ are NOT to be

implemented until In-lab 2.) Your program need only display the points themselves, not the

lines connecting them. Call the makeSquare() method to generate the point list for a square. Call

the makeDragon() method to generate the point list for a dragon curve. Save your implementa-

tion in the file DrawCurv.java. Be sure to document your code.

Step 2: Using the test plan below, test your program using a square.

Step 3: Similarly test your program using a dragon curve. Note that the point lists for dragon

curves grow quite large as the recursion depth is increased.

(1, 2)
(1.29, 2.71)
(2, 3)
(2.71, 2.71)
(3, 2)
(2.71, 1.29)
(2, 1)
(1.29, 1.29)

LABORATORY 2

38

Step 4: If you discover mistakes in your implementation of DrawCurv.java, correct them and

execute your test plan again.

Test case Expected result Checked

Square (center (100, 100),

length 150)

(25, 25)

(175, 25)

(175, 175)

(25, 175)

(25, 25)

Dragon curve (start pt (50, 50),

length 100, angle 70, recur-

sion depth 2)

(96, 33)

(113, 79)

(67, 96)

(84, 142)

(84, 142)

Dragon curve (recursion

depth 5)

Test Plan for the Curve Drawing Program

LABORATORY 2

39

LABORATORY 2: In-lab Exercise 2

Name

Hour/Period/Section

Date

It is preferable to see the graphical form of the curve represented by the point list created in

DrawCurv.java rather than just have a list of points that would become a square (or dragon

curve) if we “connected the dots.” Each point in our Point List ADT for a square or a dragon

curve represents the location of a pixel in our graphic display. On the computer screen a pixel

(or picture element) is a tiny dot that represents a very small piece of a picture. Today’s com-

puter screens typically have a resolution of 1024 by 768 pixels or greater. Each computer sys-

tem and programming language defines a coordinate system that allows us to refer to a pixel

location on the screen. Fortunately, Java has a vast graphics library, officially called the abstract

window toolkit (AWT), to help you create and manage your graphic display.

For the most part two revisions to the DrawCurv program are needed to display a graphic draw-

ing in a simple window: (1) additions to the default constructor and (2) definition of a new sub-

class of the Canvas class. Among the AWT classes used for this graphic display are the Frame

class, the Canvas class, the WindowAdapter class, and the Graphics class.

Every graphical program in Java consists of one or more frame windows. Therefore, begin by

defining the DrawCurvFrame class so that it extends Java’s Frame class as follows.

class DrawCurvFrame extends Frame

The default constructor for DrawCurvFrame has purposely been designed to define the runtime

environment and initiate the processing for the DrawCurv program. To convert this console

application (where the display is confined to a single terminal window) to a graphical applica-

tion (that is capable of displaying both text and graphics) requires definition of a graphical runt-

ime environment. To initialize the window frame for this graphical application, add the code

fragments (as illustrated below) to the default constructor for DrawCurvFrame.

class DrawCurvFrame extends Frame
{

 // Create area/Canvas for drawings
 CurvCanvas cBoard = new CurvCanvas();

LABORATORY 2

40

 // Default constructor
 public DrawCurvFrame() throws IOException
 {

 // Set up graphics windows -- Frame & added Canvas
 // Initialize the basic window Frame
 setTitle("Curve Drawing - Laboratory 2"); // window title
 setSize(500, 400); // window size

 // Define how the window responds to click on close button
 addWindowListener(new MyLocalWindowAdapter());

 // Add area/Canvas for drawings
 add(cBoard);

 if (dispPts == 'Y' || dispPts == 'y')
 {
 // Iterate through the PointList

 // Make Canvas invisible
 cBoard.setVisible(false);
 }
 else
 {
 // Show window display of curve - make frame visible
 setVisible(true);
 }
 } // default constructor: DrawCurvFrame()

 // Define MyLocalWindowAdapter
 private class MyLocalWindowAdapter extends WindowAdapter
 {
 public void windowClosing(WindowEvent event)
 {
 dispose();
 System.exit(0);
 }
 } // Inner class MyLocalWindowAdapter

}// class DrawCurvFrame

This code fragment gives the window/frame the title “Curve Drawing—Laboratory 2,” establishes

its initial size at 500 by 400 pixels, and then adds a WindowListener for programming the desired

response when the user clicks on the close button and a Canvas board in which the drawing will

actually appear. In the if-clause, the setVisible method determines whether a particular compo-

nent will be visible (setVisible(true)) or invisible (setVisible(false)). Also included is an

inner class definition that allows us to override the windowClosing method in Java’s

WindowAdapter class. (An inner class is a class definition embedded inside another class.) When

the user clicks on the window’s close button, our windowClosing method in this inner class

MyLocalWindowAdapter first calls dispose, which releases all associated graphics resources and

causes the window display to close; then the program itself terminates (System.exit(0)).

LABORATORY 2

41

Finally, create a class definition for CurvCanvas that extends Java’s Canvas class as follows:

class CurvCanvas extends Canvas
{
 // Paint is the inherited method we override
 // in order to draw our own image in an AWT window
 public void paint(Graphics g)
 {
 Point pt; // Point on curve
 int startX, // (x, y) points for drawLine
 startY;

 // Display the curve by iterating through the PointList (drawPts)
 if (DrawCurvFrame.drawPts.gotoBeginning())
 {

 // Call g.drawLine(int p1, int p2, int p3, int p4)

 }

} // class CurvCanvas

In Java a canvas is used to provide a dedicated drawing area for graphics. The paint method

given above overrides the paint method in Java’s Canvas class. The paint method in

DrawCurv.java will contain the code for drawing a square or dragon curve on the computer

screen—it will allow us to “connect the dots.”

The coordinate system on the computer screen is slightly different from the traditional two-

dimensional coordinate system. As illustrated below, the origin (0, 0) is in the upper-left corner

of the computer window and all coordinates are positive. The x-axis increases horizontally from

left to right. And (most notable) the y-axis increases (not decreases) vertically from top to

bottom.

(1, 1)

(3, 2)

(4, 4)

1 2 3 4

1

2

3

4

(0, 0)

y-
a
x
i
s

x-axis

LABORATORY 2

42

In the paint method the statement g.drawLine(startX, startY, endX, endY) is used to draw a

line from point A (startX, startY) to point B (endX, endY) where g is the Graphics parameter

passed to the paint method. In other words, the following statement would draw a line between

points (1, 1) and (3, 2).

g.drawLine(1, 1, 3, 2);

These points without the drawn line are illustrated above.

Step 1: Modify your DrawCurv program (DrawCurve.java) so it produces a graphic display of

the line segment connecting each pair of points in a point list. Segments where the comments

are labeled ‘graphics:’ in the DrawCurve.jshl file are to be implemented at this time.

Step 2: Test your modified program using a square and a dragon curve. A test plan is given

below.

Step 3: If you discover mistakes in your graphics implementation of DrawCurv.java, correct

them and execute your test plan again.

Test case Expected curves Checked

Square

Dragon curve (recursion

depth 2)

Dragon curve (recursion

depth 7)

Test Plan for the Curve Drawing Program

LABORATORY 2

43

LABORATORY 2: In-lab Exercise 3

Name

Hour/Period/Section

Date

Inserting points at the beginning of a point list is a little bit trickier—and more time consum-

ing—than adding them at the end.

void insertBeginning (Point newPoint)

Precondition:

List is not full.
Postcondition:

Inserts newPoint at the beginning of a list. If the list is empty, then inserts newPoint as the

first (and only) point in the list. In either case, moves the cursor to newPoint.

Step 1: Implement this method and add it to the file PointList.java. An incomplete definition

for this method is included in the definition of the PointList class in the file PointList.jshl.

Step 2: Complete the following test plan by adding test cases that check whether your imple-

mentation of the insertBeginning method correctly inserts points into an empty list.

Step 3: Activate the “#” (insert at beginning) command in the test program TestPointList.

java by removing the comment delimiter (and the character “#”) from the lines beginning with

“//#”.

LABORATORY 2

44

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

insertBeginning method, correct them and execute your test plan again.

Test case Commands Expected result Checked

Insert a series of points at the

beginning of the list

+ 1 2
+ 3 4
+ 5 6
+ 7 8

(7,8) (5,6) (3,4) (1,2)

Note: The point marked by the cursor is shown in bold.

Test Plan for the insertBeginning Operation

LABORATORY 2

45

LABORATORY 2: Postlab Exercise 1

Name

Hour/Period/Section

Date

In In-lab Exercise 2 you used Java’s AWT to create a basic graphic display of the point list for a

square and a dragon curve. As stated earlier, Java has a vast graphics library or AWT to help you

create and manage your graphic display. Obviously, there are many other AWT commands in

addition to the ones discussed in In-Lab Exercise 2 that could have been used to give your

graphic display a little more “pizzaz.”

For example, the background color is white by default. Explain how you could have made the

background color in your graphics window blue or green instead of white. Explain what other

AWT library facilities you might have used to further enhance your graphic display of a square

or a dragon curve.

TEAMFL
Y

Team-Fly®

LABORATORY 2

46

LABORATORY 2: Postlab Exercise 2

Name

Hour/Period/Section

Date

In this lab, you allocated the array used to store a point list dynamically. What is the advantage

of allocating an array dynamically? Why was dynamic allocation not needed for the logbook

array in Laboratory 1?

47

LABORATORY 33

String ADT
OBJECTIVES

In this laboratory, you

• examine some of the shortcomings in Java’s built-in String class.

• create a program that performs lexical analysis using Java’s built-in String data type.

• create an efficient program involving several modifications to the same String.

• develop an AWT implementation that manipulates Strings.

OVERVIEW

When computers were first introduced, they were popularly characterized as giant calculating

machines. This characterization ignores the fact that computers are equally adept at manipu-

lating other forms of information, including alphanumeric characters.

Java supports the manipulation of character data through the primitive data type char and the

associated operations for the input, output, assignment, and comparison of characters. Most

applications of character data require character sequences—or strings—rather than individual

characters. In Java a string is represented by the built-in class String. However, manipulating a

String data type in Java is quite different from manipulating a set (or array) of characters. For

example,

• Strings are compared using methods that have very different calling conventions from the

familiar relational operators (==, <, >, and so forth).

• Java Strings are immutable. That is, once a String is set up, it cannot be changed. Therefore,

each time we modify a String in any way, the Java system makes a new String object and the

old one becomes subject to garbage collection. This can be very inefficient if a lot of changes

are made to a String.

• When significant modifications to a String will be necessary, another built-in class, called a

StringBuffer, is usually a better choice for the implementation.

The Java API (application programming interface) defines hundreds of classes and methods. It

is important to be familiar with several of these built-in classes, especially with some of the

classes and methods that the Java programmer will use on a day-to-day basis. Strings are among

the most used data types in programming. Therefore, in this Laboratory we will take a side trip

from the usual development of your own ADT to more closely examine Java’s built-in String

ADT (class) and some other classes that can be useful for manipulating alphanumeric data or

strings.

LABORATORY 3

48

Although most Java classes require use of the new operator to instantiate an object of that data

type, a Java String can be declared and initialized without using the new operator. For instance,

String fname = "Sandy";

assigns the string literal “Sandy” to the variable fname. Wherever a string literal appears, a

String object is created. That is, for String objects, the explicit use of the new operator and the

call to the constructor can be replaced with this shortcut notation.

You can assign a different string to the variable fname as follows:

fname = "Jim";

Remember Java String objects are immutable. That is, once a String object is created, its value

cannot be lengthened or shortened, nor can any of its characters be changed. So, the statement

above represents the creation of a new String object. The memory location that held the old

fname object with the string “Sandy” becomes garbage.

The class String provides the method length(), which returns as an int value the number of

characters in the String object. For example, in the following statement len will equal 3

assuming the String variable fname still contains the string “Jim”.

int len = fname.length();

The empty string, a string containing no characters, is written as "" and has a length of 0.

Java String position numbers start at 0. For example, here are the position numbers in the

String “Hello World!”:

The length of this String is 12. The position number of the last character in the String (11 for

the String “Hello World!”) is always 1 less than the length of the String.

Some of the more commonly used methods of the String class along with a brief description of

what that method does are given next. This is not a complete list of all the String methods

available in Java. For uniformity, the format used to describe the built-in String class is similar

to the format used in all other laboratories when describing programmer-defined ADTs. For

brevity, whenever the Preconditions are None, the Precondition information has been omitted.

0 1 2 3 4 5 6 7 8 9 10 11

H e l l o W o r l d !

LABORATORY 3

49

STRING ADT (a built-in class)

Elements

A (possibly empty) set of characters.

Structure

The characters in a string are in sequential (or linear) order—that is, the characters follow one

after the other from the beginning of a string to its end. The character positions are numbered

beginning with zero. A word, phrase, or sentence are some examples of strings.

CONSTRUCTORS (some of the more commonly used String constructors)

String ()

Postcondition:

Default constructor. Creates an empty String object.

String (char[] charSeq)

Postcondition:

Creates a new String object with a character sequence identical to the character array

charSeq.

String (String str)

Postcondition:

Creates a new String object whose contents are equivalent to String str. The newly created

String object is an exact but separate copy of the String str.

METHODS (some of the more commonly used String methods)

char charAt (int n)

Precondition:

n must be a valid String index less than the length of the String.
Postcondition:

Returns the nth character in a string. Can throw a StringIndexOutOfBoundsException.

int compareTo (String str)

Precondition:

str is not null.
Postcondition:

Returns a value indicating if the invoking String object is lexically before (returns a negative

value), equal to (returns 0), or after (returns a positive value) the String str. Can throw a

NullPointerException.

LABORATORY 3

50

boolean equals (String rightString)

Postcondition:

Returns true if the invoking String object and rightString have the same value.

boolean equalsIgnoreCase (String rightString)

Postcondition:

Returns true if the invoking String object and rightString have the same value independent

of the case (uppercase or lowercase) of each character. Otherwise, returns false.

int indexOf (int ch)

Postcondition:

Returns the position within the invoking String object at which the first (the leftmost)

occurrence of the character ch is located. If ch is not found, �1 is returned.

int indexOf (int ch, int start)

Postcondition:

Returns the position within the invoking String object at which the first (the leftmost)

occurrence of the character ch is located, with start specifying the position at which to

begin the search. If ch is not found, �1 is returned.

int indexOf (String str)

Precondition:

str is not null.
Postcondition:

Returns the position within the invoking String object at which the first (the leftmost)

occurrence of the String str is located. If str is not found, �1 is returned. Can throw a

NullPointerException.

int length ()

Postcondition:

Returns the number of characters in the String object.

String substring (int start)

Precondition:

start must be a nonnegative String index not greater than the length of the String.
Postcondition:

Returns a new String object containing the substring starting at position start and continu-

ing until the end of the invoking object. Can throw a StringIndexOutOfBoundsException.

LABORATORY 3

51

String substring (int start, int end)

Precondition:

start and end must be nonnegative String indices not greater than the length of the String

and start must not be greater than end.
Postcondition:

Returns a new String object containing the substring starting at position start through posi-

tion end - 1 of the invoking String object. A total of end - start characters are copied into

the new String object. Can throw a StringIndexOutOfBoundsException.

String toLowerCase ()

Postcondition:

Returns the invoking String object if all its characters are already lowercase. Otherwise,

returns a new String object in which all characters have been converted to lowercase.

String toUpperCase ()

Postcondition:

Returns the invoking String object if all its characters are already uppercase. Otherwise,

returns a new String object in which all characters have been converted to uppercase.

LABORATORY 3

53

LABORATORY 3: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 3

55

LABORATORY 3: Prelab Exercise

Name

Hour/Period/Section

Date

There are many useful methods built into Java’s String class. As a Java programmer, taking

some time to practice (or review) the use of several of these String methods will help make

them a part of the Java operations you use on a day-to-day basis. In this PreLab exercise you

will be asked to implement six different operations that utilize methods in the String class:

showStructure, lessThan, gtrThan, strCharCount, findSubstring, and firstLtrWord.

The characters in a String can be manipulated one at a time with the use of the charAt method.

A printout of the representation of a String in a fashion similar to our earlier illustration of the

String “Hello World!” (minus, of course, the boxes around each letter) could be used to illus-

trate the relationship between each character in a given String and the numbered position of

that character within the String. Part of the showStructure method is given below.

static void showStructure (String str)
{
 int j; // Loop counter
 for (j = 0 ; j < str.length(); j++)
 System.out.print(j + "\t");
 System.out.println();
 ...
 ...
}

Recall that the keyword static in the method header means it may be accessed without the use

of an invoking object. When completing the implementation of the showStructure method

remember that the charAt method can throw a StringIndexOutOfBoundsException.

Most applications that use strings will at some point sort the string data into alphabetical order,

either to make their output easier to read or to improve program performance. In order to sort

strings, you first must develop relational operations that compare strings with one another. The

String class provides the method equals, which is the equivalent of comparing two characters

using the relational operator ==. However, there is no defined counterpart for the greater than

(>) or less than (<) relational operators. To implement these relational operators a programmer

might create the following method headers for these method definitions:

static boolean lessThan (String leftString, String rightString)
static boolean gtrThan (String leftString, String rightString)

TEAMFL
Y

Team-Fly®

LABORATORY 3

56

These methods use the String class method compareTo to determine if the leftString is less

than (or greater than) the rightString.

An example of the method header for the definition of the strCharCount method is given below.

static int strCharCount (String inputString, char ch)

This method uses the String method indexOf to return a count of the number of times the char-

acter ch occurs in the String inputString.

An alternate approach from the one used in the substring method in the String class might

involve the String position at which to start and (instead of the stopping position) the number of

characters to be extracted from the original String. An example of the findSubstring method

header is given below.

static String findSubstring (String testStr1, int start, int count)

This method uses substring and length and returns a substring of testStr1 starting at position

start and extracting count characters if that many characters exist in the String testStr1.

While implementing the findSubstring method, remember that the substring method can

throw a StringIndexOutOfBoundsException.

Last, a combination of length, charAt, substring, and indexOf can be used to find the first letter,

the first word, and the last letter in a given sentence or phrase. An example of the firstLtrWord

method header is given below.

static void firstLtrWord (String inStr)

This method prints the following lines of information.

String is:
The string's length is:
The first letter is:
The last letter is:
The first word is:

If the String is empty, this method prints

String is:
The string's length is: 0
The string is empty! No more data to print.

This method should not throw an exception if there is only one word or letter in the String

inStr.

Step 1: Implement the six operations described above: showStructure, lessThan, gtrThan,

strCharCount, findSubstring, and firstLtrWord. Each method implementation is to utilize one

or more of the methods in the built-in String class. Base your implementation on the incom-

plete class definition provided in the file Test3.jshl.

Step 2: Save your method implementations in the file Test3.java. Be sure to document your

code.

LABORATORY 3

57

LABORATORY 3: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

Test your implementations in the file Test3.java. This program supports the following tests.

Step 1: Complete the test plan for Test 1 by filling in the expected result for each String.

Step 2: Compile and run your implementations of these operations in the file Test3.java.

Step 3: Execute the test plan. If you discover mistakes in your implementation of the

showStructure method, correct them and execute the test plan again.

Test Action

1 Tests showStructure operation.

2 Tests relational operations (lessThan and gtrThan).

3 Tests strCharCount operation.

4 Tests findSubstring operation.

5 Tests firstLtrWord operation.

Test case String Expected result Checked

Simple string alpha 0 1 2 3 4
a l p h a

Longer string epsilon

Single-character string a

Empty string empty

Test Plan for Test1 (showStructure Operation)

LABORATORY 3

58

Step 4: Complete the test plan for Test 2 by filling in the expected result for each pair of

strings.

Step 5: Execute the test plan. If you discover mistakes in your implementation of the rela-

tional operations, correct them and execute the test plan again.

Test case Pair of Strings Expected result < == > Checked

Second string greater alpha epsilon

First string greater epsilon alpha

Identical strings alpha alpha

First string embedded in

second

alp alpha

Second string embedded in

first

alpha alp

First string is a single character a alpha

Second string is a single

character

alpha a

First string is empty empty alpha

Second string is empty alpha empty

Both strings are empty empty empty

Test Plan for Test2 (lessThan and gtrThan Operations)

LABORATORY 3

59

Step 6: Complete the test plan for Test 3 by filling in the character count for each String.

Step 7: Execute the test plan. If you discover mistakes in your implementation of the

strCharCount method, correct them and execute the test plan again.

Step 8: Complete the test plan for Test 4 by filling in the expected result for each String, start,

count combination.

Step 9: Execute the test plan. If you discover mistakes in your implementation of the

findSubstring method, correct them and execute the test plan again.

Test case Character to find Expected count Checked

a z 0

a a

mississippi i

Empty string empty

Test Plan for Test3 (strCharCount Operation)

Test case (String, start, count) Expected result Checked

Simple substring ("alpha", 0, 3) alp

Single character string and

negative start index

("a", -1, 1) a

Start greater than String length ("test", 5, 1)

Count greater than String

length

("test", 0, 8)

Start and count greater than

String length

("test", 8, 8)

Test Plan for Test4 (findSubstring Operation)

LABORATORY 3

60

Step 10: Complete the test plan for Test 5 by filling in the output printed by the firstLtrWord

operation.

Step 11: Execute the test plan. If you discover mistakes in your implementation of the first-

LtrWord method, correct them and execute the test plan again.

Test case Line(s) printed Expected result Checked

Simple phrase

“Begin and end”

String is:
The string's length is:
The first letter is:
The last letter is:
The first word is:

Begin and end
13
B
d
Begin

Single word

“Begin”

String is:
The string's length is:
The first letter is:
The last letter is:

The first word is:

Begin
5
B
n

Begin

Single character string “A”

Empty String

Test Plan for Test5 (firstLtrWord Operation)

LABORATORY 3

61

LABORATORY 3: In-lab Exercise 1

Name

Hour/Period/Section

Date

A compiler begins the compilation process by dividing a program into a set of delimited strings,

or tokens. This task is referred to as lexical analysis. For instance, given the Java statement,

if (j <= 10) return -1 ;

lexical analysis by a Java compiler produces the following nine tokens.

"if" "(" "j" "<=" "10" ")" "return" "-1" ";"

Before you can perform lexical analysis, you need operations that support the input (or reading)

of strings. Classes that let us define input streams are found in the java.io package of Java’s

standard library. The PreLab Exercise in Laboratory 2 provided a review of how to instantiate a

basic reader for reading data from the keyboard:

// Initialize reader connected to the standard input stream
InputStreamReader reader = new InputStreamReader(System.in);

For top efficiency when reading larger amounts of data, instead of using the statement above

consider buffering the input stream as follows:

// For efficiency, use a BufferedReader connected to the standard input stream.
BufferedReader bufReader =
 new BufferedReader(new InputStreamReader(System.in));

Since input can come from a file as well as from the keyboard, Java’s InputStreamReader can

also be connected to a file. To create an InputStream object connected to a file, first create an

instance of the FileInputStream class for a specific file. For example, the following creates a

FileInputStream called inFile that is attached to the file “progsamp.dat” (where String

filename = “progsamp.dat” and FileInputStream inFile have been declared):

// catch FileNotFoundException
try
{
 // Initialize the FileInputStream
 inFile = new FileInputStream(filename);
}
catch (FileNotFoundException e)
{
 System.out.print("Error opening file " + filename);
 return; // Can't continue execution
}

LABORATORY 3

62

Because the FileInputStream constructor can throw a FileNotFoundException, the

FileInputStream constructor statement above is enclosed in try (and catch) blocks. Also,

remember it is good programming practice to always close the file when it is no longer needed:

infile.close();

To create a BufferedReader for an InputStreamReader connected to this FileInputStream,

simply replace System.in (the keyboard reference) in the BufferedReader statement above with

the FileInputStream object inFile as follows:

BufferedReader bufFinReader =
 new BufferedReader(new InputStreamReader(inFile));

Since a program implementation might read from both the keyboard and a file, the code

fragment above also includes a revised variable name which uses the prefix ‘Fin’ (for file input)

to distinguish it from the keyboard input stream variable (bufReader) that was declared earlier.

There are two reading methods in the BufferedReader class: read and readLine. The read

method reads a character at a time. Because the read method returns an int, it must be cast to

a char as follows.

char ch = (char)bufFinReader.read();

The readLine method returns a String object containing the sequence of characters in the

entire line of text up to, but excluding, the line terminator character (newline and/or carriage

return). When the end of the file is encountered, readLine returns a null reference.

In Laboratory 2 a StreamTokenizer was inserted between the InputStreamReader and the

program to read a line of words (a string) separated by whitespace characters. The

StreamTokenizer’s nexttoken method returns the constant TT_EOF when the end of the stream is

encountered.

Another class in the Java standard class library, called StringTokenizer, will also tokenize a line

of text. The StringTokenizer class is in the java.util package. The default delimiters used by the

StringTokenizer class are the tab, space, newline, and carriage return characters—usually

referred to as the whitespace characters. Some common methods of the StringTokenizer class

are listed below.

CONSTRUCTOR (The more commonly used StringTokenizer constructor)

StringTokenizer (String str)

Postcondition:

Creates a new StringTokenizer object that will separate the String str into individual tokens

using the default delimiters (space, tab, newline, and carriage return).

LABORATORY 3

63

METHODS (some of the more commonly used StringTokenizer methods)

int countTokens ()

Postcondition:

Using the current set of delimiters, returns the number of tokens left to be extracted from

the String.

boolean hasMoreTokens ()

Postcondition:

Returns true if there are more tokens to be extracted from the String.

String nextToken ()

Precondition:

Another token remains in the String.
Postcondition:

Returns the next token as a String. Can throw a NoSuchElementException.

Step 1: Create a program that uses the operations in the String class and a tokenizer class to

perform lexical analysis on a text file containing a short Java program. Your program should

read the tokens in this file and output each token to the screen using the following format.

1 : [1stToken]
2 : [2ndToken]
 ...

This format requires that your program maintain a running count of the number of tokens that

have been read from the text file. Assume that the tokens in the text file are delimited by

whitespace characters—an assumption that is not true for Java programs in general. Save your

program as Lexical.java. Be sure to document your code.

LABORATORY 3

64

Step 2: Test your lexical analysis program using the Java program in the file progsamp.dat.

Test case Expected result Checked

Program in the file

progsamp.dat

Test Plan for the Lexical Analysis Program

LABORATORY 3

65

LABORATORY 3: In-lab Exercise 2

Name

Hour/Period/Section

Date

String class objects are immutable or unchangeable. Therefore, Java provides a separate String-

Buffer class for String objects that must be modified several times during the execution of a

program. The reasoning behind this dichotomy is that providing the flexibility for dynamically

changing a string requires substantial overhead (more computer memory and greater coding

complexity). Thus, the simpler String class is preferred when String modification will be infre-

quent or nonexistent.

The code fragment

StringBuffer strBuf = new StringBuffer(15);

illustrates an essential distinction between StringBuffer objects and String objects. StringBuffer

objects can have unused character positions; String objects cannot. The string in this String-

Buffer is filled with 15 null characters. (Remember the null character in Java indicates that it

refers to no object at all.)

The capacity of the StringBuffer—the amount of space allocated for character storage—is

changed automatically whenever the current capacity is not sufficient to hold all the characters

to be added to the current StringBuffer object. However, it is best to initialize the object with

sufficient starting capacity since dynamically changing the capacity of a StringBuffer means the

entire object has to be restructured and reallocated computer memory. If this costly overhead is

not avoided, the advantages of using a StringBuffer versus frequently modifying an immutable

String object are diminished.

Listed below are some common methods in the built-in StringBuffer class. Notice that several of

these methods (such as substring, length, and charAt) are very similar to the methods with an

identical method header in the String class.

CONSTRUCTOR (some of the more commonly used StringBuffer constructors)

StringBufferer ()

Postcondition:

Creates a new StringBuffer object—default size 16. All 16 character positions are initially

null.

TEAMFL
Y

Team-Fly®

LABORATORY 3

66

StringBufferer (int size)

Postcondition:

Creates a new StringBuffer object and explicitly reserves room for size characters. All char-

acter positions are initially null. Can throw a NegativeArraySizeException.

StringBufferer (String str)

Postcondition:

Creates a new StringBuffer object, sets its initial contents to str and reserves room for 16

additional characters. These additional 16 character positions are initially null.

METHODS (some of the more commonly used StringBuffer methods)

StringBuffer append (String str)

Postcondition:

Concatenates the String str to the end of the invoking StringBuffer object.

int capacity ()

Postcondition:

Returns the number of character positions the invoking StringBuffer object has been allo-

cated.

char charAt (int n)

Precondition:

n must be a nonnegative String index less than the length of the StringBuffer.
Postcondition:

Returns the nth character in the StringBuffer object—where the characters are numbered

beginning with zero. Can throw a StringIndexOutOfBoundsException.

StringBuffer delete (int start, int end)

Precondition:

start must be a nonnegative String index not greater than the length of the StringBuffer

object and start must not be greater than end.
Postcondition:

Removes the substring starting at position start through position end - 1 of the invoking

object or through the end of the StringBuffer if end is greater than the length of the String-

Buffer. If start is equal to end, no changes are made. Can throw a StringIndexOutOfBounds-

Exception.

StringBuffer insert (int index, String str)

Precondition:

index must be a nonnegative String index not greater than the length of the StringBuffer

object.
Postcondition:

Inserts the contents of the String str into the invoking StringBuffer object starting at posi-

tion index. Can throw a StringIndexOutOfBoundsException.

LABORATORY 3

67

int length ()

Postcondition:

Returns the number of non-null characters the invoking StringBuffer object currently con-

tains.

StringBuffer reverse ()

Postcondition:

Returns the invoking StringBuffer object but with its character sequence reversed.

void setCharAt (int index, char ch)

Precondition:

index must be a nonnegative String index less than the length of the StringBuffer object.
Postcondition:

Replaces the character at position index in the invoking StringBuffer object with the new

character value ch. Can throw a StringIndexOutOfBoundsException.

String substring (int start)

Precondition:

start must be a nonnegative String index not greater than the length of the StringBuffer

object.
Postcondition:

Returns a new String object containing the subsequence of characters starting at position

start and extending to the end of the string of non-null characters contained in the invoking

StringBuffer object. Can throw a StringIndexOutOfBoundsException.

String substring (int start, int end)

Precondition:

start and end must be nonnegative String indices not greater than the length of the String-

Buffer object and start must not be greater than end.
Postcondition:

Returns a new String object containing the substring starting at position start and runs

through position end - 1 of the invoking object. Can throw a StringIndexOutOfBounds-

Exception.

String toString ()

Postcondition:

Returns a new String object equivalent to the invoking StringBuffer object.

In this exercise you will use String and StringBuffer objects to create a two-person version of

the “Hangman” word-guessing game. The game begins with one player entering a secret word

that is scrolled off the screen before the other player sits down to play. A blank guess template

then appears on the screen. This template is the same length as the secret word but has dashes

in place of the letters in the word.

LABORATORY 3

68

The player attempting to guess the secret word enters letters one at a time. After each guess,

the guess template is updated (if necessary) to show which letters in the secret word match the

letter guessed. For example, if the secret word is “scissors”, guessing ‘s’ as the first correctly

guessed letter results in the following changes in the guess template:

Guess a letter: s
s--ss--s

This process continues until the guess template matches the secret word. The number of

guesses is then output. A sample game is shown below.

Enter the secret word: test (This scrolls off the screen)

Guess a letter: a

Guess a letter: e
-e--
Guess a letter: n
-e--
Guess a letter: s
-es-
Guess a letter: t
test=test
You guessed the word in 5 guesses.

There are three key methods in this Hangman program. Note that because the guess template

string will be modified several times, for efficiency it is implemented as a StringBuffer rather

than a String. Partial definitions for these methods are given below:

static StringBuffer createTemplate (String secretWord)
// Returns a new StringBuffer object, which is a template
// containing the same number of dashes as there are letters in the secretWord.

static void updateTemplate (String secretWord, char guessLetter,
 StringBuffer guessTemplate)
// Updates the guessTemplate to include the new letter (guessLetter) guessed
// if it matches a letter in the secretWord. For multiple occurrences of the same
// letter, all letter matches are added to the guessTemplate.

static boolean matchTemplate (String secretWord, StringBuffer guessTemplate)
// Returns true if the secretWord and guessTemplate match.
// Otherwise, returns false.

Step 1: Create a program that implements the two-person “Hangman” word-guessing game

described above. Save your program as Hangman.java. Be sure to document your code.

Step 2: Complete the following test plan.

LABORATORY 3

69

Step 3: Execute the test plan. If you discover mistakes in your implementation of the Hang-

man game, correct them and execute the test plan again.

Test case Sample data Expected result Checked

test a e n s t ----

-e--
-e--
-es-
test=test
You guessed the word in 5
guesses.

cryptic a e i o u y n s t

r h c p

Your secret word

Test Plan for the Hangman Program

LABORATORY 3

70

LABORATORY 3: In-lab Exercise 3

Name

Hour/Period/Section

Date

Strings can also be read and written in a Java GUI. A correct implementation of the DrawCurv

program in Laboratory 2 (In-lab 2) generates a simple drawing of a set of points—the program

“connects the dots.” A more interactive GUI that prints and accepts text will be developed in

this lab exercise. In this process the console application of the Hangman program from In-lab 2

will be converted to a frame-based graphical application much like the DrawCurv program in

Laboratory 2: In-lab 1 was converted to a graphical application in Laboratory 2: In-lab 2.

First, it will not be necessary in this Hangman graphical application to import java.io.*, so

remove that import statement from your program. In this program it is intended that all I/O will

occur in the GUI. Only the java.awt import statements used in the DrawCurv program will be

needed here.

The data members in the HangmanFrame class will include most of the variables used in the

non-GUI Hangman implementation from In-lab 2 such as secretWord, guessLetter, numGuesses,

and guessTemplate plus the following graphic components:

private TextField guessedTxt, // for input of guessLetter
 secretTxt; // for input of secretWord
private Label secretLbl, // message for secretWord text field
 tempLbl, // displays the guessTemplate
 guessLbl; // message for guessLetter text field

These graphic components will be defined and added to the frame in the constructor for the

HangmanFrame class.

Several statements need to be included in the HangmanFrame constructor. Along with other

basic frame setup statements like setTitle and setSize, include the setLayout method

statement and its single argument as illustrated below.

// implement a simple layout similar to how text flows on a page
setLayout(new FlowLayout());

The setLayout method governs how multiple components will be arranged in the Hangman

frame. The FlowLayout class implements a simple layout style that is similar to the way in

which words flow as you type them into a word processor. Flow layout puts as many compo-

nents in a row as possible. When a component cannot fit in the current row, it is put on the next

row. The alignment defaults to center. In this layout the order in which components are added

to the frame affects their positioning within the window.

LABORATORY 3

71

The Label class is used to display a String in a GUI application. It defines three constants that

can be used to control the alignment of the String: LEFT, CENTER, and RIGHT. A label is most often

used for relaying a message to the program’s user. The following code fragment includes a Label

declaration for a label that is centered and tells the user to “Enter the secret word”:

// Add a Label message to get the secret word.
secretLbl = new Label(" Enter the secret word: ", Label.CENTER);
add(secretLbl);
// A manual 'trick' for moving next component to the next row
toNextRow();

Also included with the code fragment above is a call to toNextRow. This method ensures that the

next component appears on the next row in the frame. The code for this method is provided for

you in the file toNextRow.jshl. Our Hangman GUI has three labels: secretLbl, tempLbl, and

guessLbl. In order to reserve adequate space for the tempLbl label, declare it with a dummy

string that is large enough to handle the longest template the program is likely to accept.

tempLbl = new Label("---------------------------------------", Label.CENTER);

Most graphical applications collect keyboard input through text fields. The TextField class

creates a single-line of editable text in a GUI program. The text field appears on the screen as a

white rectangular box. The program’s user can click on the box and type information that can

be read by the application. Our Hangman GUI has two text fields, one for accepting the secret

word (secretTxt) and one for entering the next letter guessed (guessedTxt). The TextField con-

structor has one argument—an integer that specifies how many characters can be viewed in the

text field. For example, the first text field in our Hangman GUI is declared as:

secretTxt = new TextField(15);

The user can actually type more than 15 characters, but only 15 characters of a longer string

will be visible at one time. As with all components to be included in the window for this GUI,

this text field must be added to the frame:

add(secretTxt):

When the user presses the Enter key inside a text field, the text field generates an action event.

To capture each action event an ActionListener can be attached to each text field. For example,

the following statement adds an action listener to our text field (secretTxt).

secretTxt.addActionListener(new MySecretListener());

The actionPerformed method in the inner class MySecretListener specifies the actions to be

performed when text is entered in text field secretTxt.

// An inner listener class for getting the secret word
private class MySecretListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)

LABORATORY 3

72

 {
 // Get the secretWord; then clear and later remove it.
 secretWord = secretTxt.getText();
 secretTxt.setText(""); // Clear it: set to empty string
 secretLbl.setText("GUESS MY SECRET WORD");
 remove(secretTxt); // Remove text box so player can't see it

 // Create the guessTemplate for the secretWord

 // Enlarge the font for the template for emphasis
 tempLbl.setFont(new Font("Courier", Font.PLAIN, 18));

 // setText in tempLbl to the created guessTemplate
 tempLbl.setText(guessTemplate.toString());
 inTxtFld.requestFocus(); // Place cursor in this TextField
 // for receiving guessLetter input
 }

} // inner class MySecretListener

In this actionPerformed method, the getText method returns the current contents of the text

field as a String object. The setText method is used three times in this code fragment to reset

the contents of the text field (and labels) to the specified String argument. For instance,

secretTxt.setText("") clears the text field (or sets its text to the empty string) so that the user

has a visual indication that the input has been processed. The remove(secretTxt) statement

removes the specified component (secretTxt) from the invoking object (HangmanFrame) so the

Hangman player will never see the secretWord text field. For greater emphasis, the method

setFont is used to enlarge the size of the font for the Hangman template displayed by the Label

tempLbl. The setFont method used above takes one argument of type Font, and subsequently

the Font constructor takes three parameters: the font face name as the String Courier, the style

as the Font constant Font.PLAIN, and the point size as 18. Finally, the requestFocus method

does the user a favor by automatically placing the cursor in the guessedTxt text field waiting for

the next guessed letter to be entered. The guessedTxt text field will also need an action listener

that is defined as an inner class that implements the ActionListener along with its

actionPerformed method.

Step 1: Create a program that implements the two-person Hangman word-guessing game

described in In-lab 2 as a graphical application or GUI. If necessary refer to Laboratory 2: In-lab

2, for additional help. Be sure to document your code.

Step 2: Complete the following test plan.

Step 3: Use the test plan you created in In-lab Exercise 2. Execute the test plan. If you dis-

cover mistakes in your implementation of the Hangman game, correct them and execute the

test plan again.

LABORATORY 3

73

 LABORATORY 3: Postlab Exercise 1

Name

Hour/Period/Section

Date

For many programmers the assignment operator can deliver some unexpected results. For

example, in this laboratory you have reviewed two common classes in Java for working with

strings, the String class and the StringBuffer class. Now consider the following code fragment:

// Using assignment operator with the String class
String str1 = "test";
String str2;
str2 = str1;
str1 = str1 + "s"; // same as str1 = str1.concat("s")

// versus using assignment operator with the StringBuffer class
StringBuffer bstr1 = new StringBuffer("test");
StringBuffer bstr2;
bstr2 = bstr1;
bstr1.append("s");

What is the result of using the assignment operator with objects of either of these classes? Do

changes to the String str1 also affect the state of str2? Do changes to the StringBuffer bstr1

also affect the state of bstr2? Is the change phenomenon the same in both cases? Explain why

or why not.

LABORATORY 3

74

LABORATORY 3: Postlab Exercise 2

Name

Hour/Period/Section

Date

In Laboratory 2 and 3 you used Java’s AWT (abstract window toolkit) to create a frame-based

graphical application. An applet, like a frame, is a component that can hold other components.

The Applet class is contained in the java.applet package in Java’s standard library. Here are a

few steps to follow to convert most frame applications to an applet:

1. Add a statement to import java.applet.Applet.

2. Remove the definition of the main method that shows the frame—an applet calls the

init method instead of main. If nothing else remains in the surrounding class, also

drop the class.

3. For code readability, rename the class that extends frame (e.g., HangmanFrame) as an

applet (e.g., HangmanApplet).

4. Define the class as public and indicate that it extends Applet, not Frame.

5. Rename the default constructor in this class (e.g., was HangmanFrame) as the public

void init method.

6. Remove the WindowListener—an applet has no close buttons; hence there is no Win-

dowAdapter subclass and no windowClosing method in the Applet classes.

7. Remove the applet call to setSize and instead set the size in the applet’s HTML page.

8. Remove the applet call to setTitle—an applet has no title bar.

9. Save the file under the same name that was assigned to the class that extends Applet

(e.g., HangmanApplet.java).

In general a Java applet is created to run in a Java-enabled Web browser, such as Netscape Nav-

igator or Microsoft Internet Explorer. Because it runs on a Web browser an applet is always

invoked through an HTML page. During development and testing, the appletviewer provided as

part of the JDK (Java Development Kit from Sun Microsystems) can be used instead of a Web

LABORATORY 3

75

browser. An abbreviated sample HTML document that will run the Hangman applet would look

like the following:

<HTML>
<BODY>
<P>
<APPLET code = "HangmanApplet.class" width=300 height = 200>
</APPLET>
</P>
</BODY>
</HTML>

It is essential that all the HTML tags shown above appear in every HTML document used to run

a Java applet. The applet tag portion in the above HTML sample is:

<APPLET code = "HangmanApplet.class" width=300 height = 200>
</APPLET>

This tag dictates that the bytecode in the file Hangman.class should be executed on the com-

puter that is viewing this particular HTML document. To execute the DrawCurvApplet instead

of the HangmanApplet, replace the String “HangmanApplet.class” with the String

“DrawCurvApplet.class”. The size of the applet window can be adjusted by changing the values

after width= and height= in the HTML applet tag. In other words, to run a different compiled

Java program, insert the name of its .class file in place of the “HangmanApplet.class” name

given in the sample above and change the width and height of your applet window by resetting

those values within that same HTML applet tag.

Experiment with applets by creating the file HangmanApplet.java and the HTML document

Hangman.html discussed above. Compile your program as usual. Run the applet by loading the

HTML document into a Web browser or using the JDK appletviewer. Based on your experience

what are some advantages and disadvantages of developing and using Java applets? For

instance, is it easy to develop applets from scratch? Does your applet look the same in Netscape

and Internet Explorer? To permit someone else who knows nothing about Java to run your

applet, what file(s) must you give them? What other comments/concerns do you have about

Java applets?

TEAMFL
Y

Team-Fly®

77

LABORATORY 44

Array Implementation of
the List ADT
OBJECTIVES

In this laboratory you

• implement the List ADT using an array representation of a list—including development of an

iteration scheme that allows you to move through a list element by element.

• use an interface to define a generic set of methods to be implemented by every list data struc-

ture.

• create a program that analyzes the genetic content of a DNA sequence.

• analyze the efficiency of your array implementation of the List ADT.

OVERVIEW

The list is one of the most frequently used data structures. Although all programs share the

same definition of list—a sequence of homogeneous elements—the type of element stored in

lists varies from program to program. Some use lists of integers, others use lists of characters,

floating-point numbers, points, and so forth.

Fortunately, you do not need to create a different list implementation for each type of list

element. Instead, you create a list implementation in terms of list elements of Java’s generic

type Object. The Object class is the root of the class hierarchy in Java. Every class is a subclass

of Object, but it is not necessarily a direct subclass.

But what about a list (or array) of int—one of Java’s primitive data types? Remember that a

primitive variable is not an Object, but everything else is. Java provides a wrapper class (Byte,

Short, Integer, Long, Character, Float, Double, or Boolean) that encapsulates each of the prim-

itive data types (byte, short, int, long, char, float, double, or boolean, respectively). Note that

the class names Character and Integer are not abbreviated like their primitive counterparts

char and int. When it is necessary to represent a primitive as an Object, use a wrapper class.

A primitive data type can be converted into an Object and visa versa. Here’s an example of how

an int is placed into an Integer (wrapper class) object and taken back out:

int i = 55;
int j;
Integer example = new Integer(i); // Constructor converts int to Integer

// Both have value of 55
j = example.intValue(); // The Integer method intValue

// converts it back to an int

LABORATORY 4

78

The primitive operations (+, -, <, >=, etc.) are not available in their wrapper class counterparts.

For example, the expressions x + y is not valid when x and y are Integer objects. To perform this

primitive operation, first convert each Integer to an int and then add. The intValue() method

in the Integer class can be used to convert x and y to int values and then the resulting int

values can be summed using the primitive operation +.

The following is a table of the eight wrapper classes for the eight primitives along with the con-

structor and method that provides conversion between the wrapper class and its corresponding

primitive.

Once a list implementation has been created in terms of the generic type Object, the implemen-

tation can be customized to produce a list of elements of a specified type by substituting that

type for the generic type Object. A list of characters, for example, requires substituting type

Character or char converted to Character for the Object parameter in the insert method as

illustrated in the following code fragment.

ListArray testList = new ListArray(8); // Test ListArray of size 8
char testElement = 'c'; // A list element, initialized to 'c'
// Insert a char converted to Character—Character is a subclass of Object
testList.insert(new Character(testElement));

A similar substitution is required in any other method that takes an Object parameter, such as

the replace method. For a method that returns the generic Object, the process needs to be

reversed in order to get back the char that was earlier added to the list. The following code

fragment will convert the Object that is returned in the method getCursor back to its char form.

// Get it back again: cast Object to Character, then convert Character to char
testElement = ((Character)testList.getCursor()).charValue();

If an ADT is to be useful, its operations must be both expressive and intuitive. The List ADT

described next provides operations that allow you to insert elements in a list, remove elements

from a list, check the state of a list (Is it empty? or Is it full?), and iterate through the elements

in a list. Iteration is done using a cursor that you move through the list much as you move the

Wrapper Class Constructor: Converts Primitive to Wrapper Method: Converts Wrapper to Primitive

Boolean Boolean(boolean value) boolean booleanValue()

Byte Byte(byte value) byte byteValue()

Character Character(char value) char charValue()

Double Double(double value) double doubleValue()

Float Float(float value) float floatValue()

Integer Integer(int value) int intValue()

Long Long(long value) long longValue()

Short Short(short value) short shortValue()

LABORATORY 4

79

cursor in a text editor or word processor. In the following example, the List ADT’s

gotoBeginning operation is used to move the cursor to the beginning of the list. The cursor is

then moved through the list element by element, by repeated applications of the gotoNext oper-

ation. Note that the element marked by the cursor is shown in bold.

After gotoBeginning: a b c d

After gotoNext: a b c d

After gotoNext: a b c d

After gotoNext: a b c d

List ADT

Elements

The elements in a list are of generic type Object.

Structure

The elements form a linear structure in which list elements follow one after the other, from the

beginning of the list to its end. The ordering of the elements is determined by when and where

each element is inserted into the list and is not a function of the data contained in the list ele-

ments. At any point in time, one element in any nonempty list is marked using the list’s cursor.

You travel through the list using operations that change the position of the cursor.

Constructors and their Helper Method

List ()

Precondition:

None.
Postcondition:

Default Constructor. Calls setup, which creates an empty list and allocates enough memory

for a list containing DEF_MAX_LIST_SIZE (a constant value) elements.

List (int maxNumber)

Precondition:

maxNumber > 0.
Postcondition:

Constructor. Calls setup, which creates an empty list and allocates enough memory for a list

containing maxNumber elements.

LABORATORY 4

80

void setup(int maxNumber)

Precondition:

maxNumber > 0. A helper method for the constructors. Is declared private since only list

constructors should call this method.
Postcondition:

Creates an empty list of a specific size based on the value of maxNumber received from the

constructor.

Methods in the Interface

void insert (Object newElement)

Precondition:

List is not full and newElement is not null.
Postcondition:

Inserts newElement into a list after the cursor. If the list is empty, newElement is inserted as

the first (and only) element in the list. In either case (empty or not empty), moves the cur-

sor to newElement.

void remove ()

Precondition:

List is not empty.
Postcondition:

Removes the element marked by the cursor from a list. If the resulting list is not empty,

then moves the cursor to the element that followed the deleted element. If the deleted ele-

ment was at the end of the list, then moves the cursor to the element at the beginning of the

list.

void replace (Object newElement)

Precondition:

List is not empty and newElement is not null.
Postcondition:

Replaces the element marked by the cursor with newElement. The cursor remains at new-

Element.

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in a list.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a list is empty. Otherwise, returns false.

LABORATORY 4

81

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a list is full. Otherwise, returns false.

boolean gotoBeginning ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the beginning of the list and returns true.

Otherwise, returns false.

boolean gotoEnd ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the end of the list and returns true. Other-

wise, returns false.

boolean gotoNext ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the end of a list, then moves the cursor to the next element in the list

and returns true. Otherwise, returns false.

boolean gotoPrior ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the beginning of a list, then moves the cursor to the preceding element

in the list and returns true. Otherwise, returns false.

Object getCursor ()

Precondition:

List is not empty.
Postcondition:

Returns a copy of the element marked by the cursor.

LABORATORY 4

82

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the elements in a list. If the list is empty, outputs “Empty list”. Note that this oper-

ation is intended for testing/debugging purposes only.

LABORATORY 4

83

LABORATORY 4: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 4

85

LABORATORY 4: Prelab Exercise

Name

Hour/Period/Section

Date

You can implement a list in many ways. Given that all the elements in a list are of the same

type, and that the list structure is linear, an array seems a natural choice.

Arrays have a limited capacity. An important characteristic of arrays in Java is that the size of

the array is held in a final public data member called length in the array object. Unlike the

length method in the class String, this is a data member, not a method, so there are no paren-

theses following length. For example, consider the declaration

int scores = new int[10];

After this declaration, scores.length is 10. Note that although length is public, its value cannot

be changed because is it also declared as final.

Valid values for the array index range from 0 through one less than the length of the array. Java

safely handles invalid array index references. Trying to access an invalid array index will cause

the program to terminate with an ArrayIndexOutOfBoundsException.

The List ADT has a common set of methods that any List implementation should provide. For

example, the Point List ADT in Laboratory 2 has a set of commands nearly identical to the List

ADT in this laboratory. Some future laboratories will also implement this List ADT.

In Java, one approach to identifying these common methods that may be used for a variety of

list implementations is to define an interface. An interface definition is similar to a class defi-

nition, but

• An interface does not (and cannot) have any data members.

• An interface can specify a set of constants—the modifiers public static final need not be

specified since they are implicit for constants in an interface.

• All methods are automatically abstract—they don’t have an implementation. The header of

each method, including its parameter list, is simply followed by a semicolon.

• All methods are automatically public. Note that the class must explicitly declare the imple-

mented interface method as public, however.

• An interface cannot be instantiated—it is not a class and all its methods are abstract.

TEAMFL
Y

Team-Fly®

LABORATORY 4

86

The List interface is in the file List.java and is defined as follows:

interface List // Constants & Methods common to List ADTs
{
 // Default maximum list size - a constant
 public static final int DEF_MAX_LIST_SIZE = 10;

 // List manipulation operations
 public void insert(Object newElement); // Insert Object after cursor
 public void remove(); // Remove element at cursor
 public void replace (Object newElement); // Replace element at cursor
 public void clear(); // Remove all elements from list

 // List status operations
 public boolean isEmpty(); // Returns true if list is empty
 public boolean isFull(); // Returns true if list is full
 public boolean gotoBeginning(); // Moves cursor to beginning of list
 public boolean gotoEnd(); // Moves cursor to end of list
 public boolean gotoNext(); // Moves cursor to next element in list
 public boolean gotoPrior(); // Moves cursor to preceding element
 public Object getCursor(); // Returns the element at the cursor
 public void showStructure(); // Outputs the elements in a list.

// for testing/debugging purposes only
} // interface List

Any class that implements List, as the class ListArray does in Step 1 below, is required to

provide a public implementation for every method listed in the interface List. The Java com-

piler will produce errors if any of the methods in the interface are not given a definition in the

implementing class.

Step 1: Implement the operations in the List ADT using an array to store the list elements.

Lists change in size as elements are added, removed, and the like. Therefore, you need to store

the actual number of elements in the list (size), along with the list elements themselves

(element). The maximum number of elements our list can hold can be determined by referenc-

ing length in the array object—more specifically, in our case, by referencing element.length.

You also need to keep track of the cursor array index (cursor).

Base your implementation on the following incomplete definitions from the file ListArray.jshl. You

are to fill in the Java code for each of the constructors and methods in which the implementation

braces are empty, only partially filled (noted by “add code here …”), or where an entire method or

set of methods from the interface needs to be inserted (noted by “insert method … here”).

class ListArray implements List // Array based list class
{
 // Data Members
 private int size, // Actual number of elements in the list
 cursor; // Cursor array index
 private Object [] element; // Array containing the list elements

 // Constructors and helper method setup
 public ListArray() // Constructor: default size
 { }

LABORATORY 4

87

 public ListArray(int maxNumber) // Constructor: specific size
 { }

 // Class methods
 private void setUp (int maxNumber) // Called by constructors only
 { }

 // ------ Insert method implementations for the interface list here ------ //

} // class ListArray

Step 2: Save your implementation of the List ADT in the file ListArray.java. Be sure to docu-

ment your code.

The following sample program (in the file Sample.java) uses the array implementation of the

operations in the List ADT (in the file ListArray.java) to read in a list of integer samples and

compute their sum. Especially notice how conversions are made between a primitive (int) to an

Object (Integer) and back again.

import java.io.*;

class Sample
{
 public static void main (String [] args) throws IOException
 {
 ListArray samples = new ListArray(100);// Set of samples
 int newSample, // Input sample
 total = 0; // Sum of the input samples
 //---
 // Instantiate several classes for processing input.
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));
 StreamTokenizer tokens = new StreamTokenizer(reader);

 // Read in a set of samples from the keyboard.
 System.out.print("Enter list of samples (end with eof) : ");
 // Keep reading as long as text (the word eof) has not been entered
 while (tokens.nextToken() != tokens.TT_WORD)
 {
 newSample = (int)tokens.nval;
 // insert an Object — an int converted to an Integer
 samples.insert(new Integer(newSample));
 }

 // Sum the samples and output the result.
 if (samples.gotoBeginning()) // Go to beginning of list
 // Add element to running sum
 // must cast Object to Integer, then convert Integer to int
 do
 total += ((Integer)samples.getCursor()).intValue();
 while (samples.gotoNext()); // Go to next element (if any)

 System.out.println("Sum is " + total);
 } // main

} // class Sample

LABORATORY 4

88

LABORATORY 4: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test programs that you used in Laboratories 1 and 3 consisted of a series of tests that were

hardcoded into the programs. Adding a new test case to this style of test program requires

changing the test program itself. In this and subsequent laboratories, you use a more flexible

kind of test program to evaluate your ADT implementations, one in which you specify a test

case using commands, rather than code. These interactive, command-driven test programs

allow you to check a new test case by simply entering a series of keyboard commands and

observing the results.

The test program in the file TestListArray.java, for instance, supports the following commands.

Command Action

+x Insert element x after the cursor.

- Remove the element marked by the cursor.

=x Replace the element marked by the cursor with element x.

@ Display the element marked by the cursor.

N Go to the next element.

P Go to the prior element.

< Go to the beginning of the list.

> Go to the end of the list.

E Report whether the list is empty.

F Report whether the list is full.

C Clear the list.

Q Quit the test program.

LABORATORY 4

89

Suppose you wish to confirm that your array implementation of the List ADT successfully

inserts an element into a list that has been emptied by a series of calls to the remove operation.

You can test this case by entering the following sequence of keyboard commands.

It is easy to see how this interactive test program allows you to rapidly examine a variety of test

cases. This speed comes with a price, however. You must be careful not to violate the precondi-

tions required by the operations that you are testing. For instance, the commands

cause the test program to fail during the last call to the remove operation. The source of the

failure does not lie in the implementation of the List ADT, nor is the test program flawed. The

failure occurs because this sequence of operations creates a state that violates the precondi-

tions of the remove operation (the list must not be empty when the remove operation is

invoked). The speed with which you can create and evaluate test cases using an interactive,

command-driven test program makes it very easy to produce this kind of error. It is very

tempting to just sit down and start entering commands. A much better strategy, however, is to

create a test plan listing the test cases you wish to check and then to write out command

sequences that generate these test cases.

Step 1: Complete the following test plan by adding test cases that check whether your imple-

mentation of the List ADT correctly handles the following tasks:

• insertions into a newly emptied list

• insertions that fill a list to its maximum size

• deletions from a full list

• determining whether a list is empty

• determining whether a list is full

Assume that the output of one test case is used as the input to the following test case and note

that, although expected results are listed for the final command in each command sequence,

you should confirm that each command produces a correct result.

Step 2: Compile and run the test program in the file TestListArray.java. Note that compiling

this program will compile your array implementation of the List ADT (in the file ListAr-

ray.java) to produce an implementation for a list of characters.

Command +a +b - - +c Q

Action Insert a Insert b Remove Remove Insert c Quit

Command +a +b - - -

Action Insert a Insert b Remove Remove Error

LABORATORY 4

90

Step 3: Execute your test plan. If you discover mistakes in your implementation of the List

ADT, correct them and execute your test plan again.

Test case Commands Expected result Checked

Insert at end +a +b +c +d a b c d

Travel from beginning < N N a b c d

Travel from end > P P a b c d

Delete middle element – a c d

Insert in middle +e +f +f a c e f f d

Remove last element > – a c e f f

Remove first element – c e f f

Display element @ Returns c

Replace element =g g e f f

Clear the list C Empty list

Note: The element marked by the cursor is shown in bold.

Test Plan for the Operations in the List ADT

LABORATORY 4

91

Step 4: Change the list in the test program (TestListArray.java) from a list of characters to a

list of integers (or any other primitive data type—except char) by replacing the declaration

testElement with

String testElement = null; // List element

replacing the assignment statement for testElement further down in the code with

testElement = aToken;

and in statements with the words “new Character”, replacing Character with the word Integer.

Every wrapper class constructor except the Character class accepts a String argument. Thus,

the only change necessary to process a list of (say) doubles instead of the list of integers used in

this version of the program is the third replacement above—in statements with the words “new

Integer”, replacing Integer with the word Double. The testElement declaration and assignment

statements remain unchanged unless you want to process a list of characters, which is what the

initial version of the program did.

Step 5: Replace the character data in your test plan (‘a’ to ‘g’) with integer values.

Step 6: Recompile and rerun the test program. Note that recompiling the program will com-

pile your implementation of the List ADT (in the file ListArray.java) to produce an implemen-

tation for a list of integers.

Step 7: Execute your revised test plan using the revised test program. If you discover mistakes

in your implementation of the List ADT, correct them and execute your revised test plan again.

LABORATORY 4

92

LABORATORY 4: In-lab Exercise 1

Name

Hour/Period/Section

Date

The genetic information encoded in a strand of deoxyribonucleic acid (DNA) is stored in the

purine and pyrimidine bases (adenine, guanine, cytosine, and thymine) that form the strand.

Biologists are keenly interested in the bases in a DNA sequence because these bases determine

what the sequence does.

By convention, DNA sequences are represented using lists containing the letters ‘A’, ‘G’, ‘C’, and

‘T’ (for adenine, guanine, cytosine, and thymine, respectively). The following method computes

one property of a DNA sequence—the number of times each base occurs in the sequence.

void countBases (ListArray dnaSequence)

Input:

dnaSequence: contains the bases in a DNA sequence encoded using the characters

‘A’, ‘C’, ‘T’, and ‘G’.

Output:

aCount, cCount, tCount, gCount: the number of times the corresponding base appears in

the DNA sequence.

Step 1: Implement this method and add it to the program in the file TestDNA.java. Your

implementation should manipulate the DNA sequence using the operations in the List ADT. An

incomplete definition for this method is given in the file TestDNA.java.

Step 2: The program in the file TestDNA.java reads a DNA sequence from the keyboard, calls

the countBases() method, and outputs the resulting base counts. Complete the following test

plan by adding DNA sequences of different lengths and various combinations of bases.

LABORATORY 4

93

Step 3: Execute your test plan. If you discover mistakes in your implementation of the

countBases() method, correct them and execute your test plan again.

Test case DNA sequence Expected result Checked

Sequence with 10 bases AGTACATGTA aCount = 4
cCount = 1
tCount = 3
gCount = 2

Test Plan for the countBases() Method

LABORATORY 4

94

LABORATORY 4: In-lab Exercise 2

Name

Hour/Period/Section

Date

In many applications, the ordering of the elements in a list changes over time. Not only are new

elements added and existing ones removed, but elements are repositioned within the list. The

following List ADT operation moves an element to a new position in a list.

void moveToNth (int n)

Precondition:

List contains at least n + 1 elements.
Postcondition:

Removes the element marked by the cursor from a list and reinserts it as the nth element in

the list, where the elements are numbered from beginning to end, starting with zero. Moves

the cursor to the moved element.

Step 1: Implement this operation and add it to the file ListArray.java. An incomplete defini-

tion of this operation is included in the definition of the ListArray class in the file ListArray.jshl.

Step 2: Complete the following test plan by adding test cases that check whether your imple-

mentation of the moveToNth operation correctly processes moves within full and single-element

lists.

Step 3: Activate the “M” (move) command in the test program TestListArray.java by removing

the comment delimiter (and the character “M”) from the lines that begin with “//M”.

LABORATORY 4

95

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

moveToNth operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Set up list +a +b +c +d a b c d

Move first element < M2 b c a d

Move element back M0 a b c d

Move to end of list M3 b c d a

Move back one M2 b c a d

Move forward one M3 b c d a

Test Plan for the moveToNth Operation

TEAMFL
Y

Team-Fly®

LABORATORY 4

96

LABORATORY 4: In-lab Exercise 3

Name

Hour/Period/Section

Date

Finding a particular list element is another very common task. The operation below searches a

list for a specified element. The fact that the search begins with the element marked by the

cursor—and not at the beginning of the list—means that this operation can be applied itera-

tively to locate all of the occurrences of a specified element.

boolean find (Object searchElement)

Precondition:

List is not empty.
Postcondition:

Searches a list for searchElement. Begins the search with the element marked by the cursor.

Moves the cursor through the list until either searchElement is found (returns true) or the

end of the list is reached without finding searchElement (returns false). Leaves the cursor at

the last element visited during the search.

Step 1: Implement this operation and add it to the file ListArray.java. An incomplete defini-

tion of this operation is included in the definition of the ListArray class in the file ListArray.jshl.

Step 2: Complete the following test plan by adding test cases that check whether your imple-

mentation of the find operation correctly conducts searches in full lists, as well as searches that

begin with the last element in a list.

Step 3: Activate the “?” (find) command in the test program TestListArray.java by removing

the comment delimiter (and the character “?”) from the lines that begin with “//?”.

LABORATORY 4

97

Step 4: Execute your test plan. If you discover mistakes in your implementation of the find

operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Set up list +a +b +c +a a b c a

Successful search < ?a Search succeeds
a b c a

Search for duplicate N ?a Search succeeds
a b c a

Successful search < ?b Search succeeds
a b c a

Search for duplicate N ?b Search fails

a b c a

Trivial search ?a Search succeeds

a b c a

Test Plan for the find Operation

LABORATORY 4

99

LABORATORY 4: Postlab Exercise 1

Name

Hour/Period/Section

Date

Given a list containing N elements, develop worst-case, order-of-magnitude estimates of the

execution time of the following List ADT operations, assuming they are implemented using an

array. Briefly explain your reasoning behind each estimate.

insert O()

Explanation:

remove O()

Explanation:

LABORATORY 4

100

gotoNext O()

Explanation:

gotoPrior O()

Explanation:

LABORATORY 4

101

LABORATORY 4: Postlab Exercise 2

Name

Hour/Period/Section

Date

Part A

Give the changes that must be made to TestListArray.java for a list of floating-point num-

bers called echoReadings. Assume that the list can contain no more than 50 floating-point

numbers.

Part B

Give the changes to TestListArray.java required for a list of (x,y,z)-coordinates called

coords. Assume that x, y, and z are floating-point numbers and that there can be no more

than 20 coordinates in the list.

103

LABORATORY 55

Stack ADT

OBJECTIVES

In this laboratory you

• create two implementations of the Stack ADT—one based on an array representation of a

stack and the other based on a singly linked list representation.

• analyze the limitations of using an ordinary assignment statement to duplicate objects versus

using a copy constructor or cloning for the singly linked list representation of a stack.

• create a program that evaluates arithmetic expressions in postfix form.

• analyze the kinds of permutations you can produce using a stack.

OVERVIEW

Many applications that use a linear data structure do not require the full range of operations

supported by the List ADT. Although you can develop these applications using the List ADT, the

resulting programs are likely to be somewhat cumbersome and inefficient. An alternative

approach is to define new linear data structures that support more constrained sets of opera-

tions. By carefully defining these ADTs, you can produce ADTs that meet the needs of a diverse

set of applications, but yield data structures that are easier to apply—and are often more effi-

cient—than the List ADT.

The stack is one example of a constrained linear data structure. In a stack, the elements are

ordered from most recently added (the top) to the least recently added (the bottom). All inser-

tions and deletions are performed at the top of the stack. You use the push operation to insert

an element onto the stack and the pop operation to remove the topmost stack element. A

sequence of pushes and pops is shown below.

These constraints on insertion and deletion produce the “last in, first out” (LIFO) behavior that

characterizes a stack. Although the stack data structure is narrowly defined, it is used so exten-

sively by systems software that support for a primitive stack is one of the basic elements of most

computer architectures.

Push a Push b Push c Pop Pop

c

b b b

a a a a a

— — — — —

LABORATORY 5

104

Stack ADT

Elements

The elements in a stack are of generic type Object.

Structure

The stack elements are linearly ordered from most recently added (the top) to least recently

added (the bottom). Elements are inserted onto (pushed) and removed from (popped) the top of

the stack.

Constructors and their Helper Method

Stack ()

Precondition:

None.
Postcondition:

Default Constructor. Calls setup, which creates an empty stack and (if necessary) allocates

enough memory for a stack containing DEF_MAX_STACK_SIZE (a constant value) ele-

ments.

Stack (int size)

Precondition:

size > 0.
Postcondition:

Constructor. Calls setup, which creates an empty stack and (if necessary) allocates enough

memory for a stack containing size elements.

void setup(int size)

Precondition:

size > 0. A helper method for the constructors. Is declared private since only stack con-

structors should call this method.
Postcondition:

Creates an empty stack of a specific size (where applicable) based on the value of size

received from the constructor.

Methods in the Interface

void push (Object newElement)

Precondition:

Stack is not full and newElement is not null.
Postcondition:

Inserts newElement onto the top of a stack.

LABORATORY 5

105

Object pop ()

Precondition:

Stack is not empty.
Postcondition:

Removes the most recently added (top) element from a stack and returns it.

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in a stack.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a stack is empty. Otherwise, returns false.

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a stack is full. Otherwise, returns false.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the elements in a stack. If the stack is empty, outputs “Empty stack”. Note that this

operation is intended for testing/debugging purposes only.

TEAMFL
Y

Team-Fly®

LABORATORY 5

107

LABORATORY 5: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 5

109

LABORATORY 5: Prelab Exercise

Name

Hour/Period/Section

Date

Multiple implementations of an ADT are necessary if the ADT is to perform efficiently in a

variety of operating environments. Depending on the hardware and the application, you may

want an implementation that reduces the execution time of some (or all) of the ADT operations,

or you may want an implementation that reduces the amount of memory used to store the ADT

elements. In this laboratory, you develop two implementations of the Stack ADT. One imple-

mentation stores the stack in an array, the other stores each element separately and links the

elements together to form a stack.

The Stack ADT has a common set of methods that any Stack implementation should provide. In

Java, one approach to identifying these common methods is to define an interface. The Stack

interface is in the file Stack.java and is defined as follows:

public interface Stack // Constants & Methods common to all stack ADTs
{
 // Default maximum stack size
 public static final int DEF_MAX_STACK_SIZE = 10;

 // Stack manipulation operations
 public void push(Object newElement); // Push Object onto stack
 public Object pop(); // Pop Object from top of stack
 public void clear(); // Remove all Objects from stack

 // Stack status operations
 public boolean isEmpty(); // Return true if stack is empty
 public boolean isFull(); // Return true if stack is full
 public void showStructure (); // Outputs the elements in the stack

// For testing/debugging purposes only
} // interface Stack

A Java interface is a collection of constants and abstract methods. An abstract method is a

method that does not have an implementation, as is evident in the interface for Stack shown

above. In a Java interface, the header of each method, including its parameter list, is simply fol-

lowed by a semicolon. Any class that implements Stack, as the class AStack does in Step 1

below, is required to provide an implementation for every method listed in the interface Stack.

The Java compiler will produce errors if any of the methods in the interface are not given a def-

inition in the implementing class.

LABORATORY 5

110

Step 1: Implement the methods in the Stack ADT using an array to store the stack elements.

Stacks change in size; therefore, you need to store the array index of the topmost element in

the stack (top), along with the stack elements themselves (element). Arrays have a limited

capacity. The maximum number of elements our stack can hold can be determined by referenc-

ing length in the array object—more specifically, in our case, by referencing element.length.

Base your implementation on the following incomplete class methods from the file AStack.jshl.

You are to fill in the Java code for each of the constructors and methods where the implemen-

tation braces are empty, only partially filled (noted by “add code here …”), or where an entire

method or set of methods from the interface needs to be inserted (noted by “insert method …

here”).

class AStack implements Stack // Array based stack class
{
 // Data members
 private int top; // Index for the top element
 private Object [] element; // Array containing stack elements

 // Constructors and helper method setup
 public AStack() // Constructor: default size
 { }
 public AStack(int size) // Constructor: specific size
 { }

 // Class methods
 private void setup(int size) // Called by constructors only
 { }

 //----- Insert method implementations for the interface Stack here -----//

} // class AStack

Step 2: Save your array implementation of the Stack ADT in the file AStack.java. Be sure to

document your code.

In your array implementation of the Stack ADT, you allocate the memory used to store a stack

when the stack is declared (constructed). The resulting array must be large enough to hold the

largest stack you might possibly need in a particular application. Unfortunately, most of the

time the stack will not actually be this large and the extra memory will go unused.

An alternative approach is to allocate memory element by element as new elements are added

to the stack. In this way, you allocate memory only when you actually need it. Because memory

is allocated over time, however, the elements do not occupy a contiguous set of memory loca-

tions. As a result, you need to link the elements together to form a linked list representation of

a stack, as shown in the following figure.

c b a

top

LABORATORY 5

111

Creating a linked list implementation of the Stack ADT presents a somewhat more challenging

programming task than did developing an array implementation. One way to simplify this task

is to divide the implementation into two classes: one focusing on the overall stack structure (the

LStack class) and another focusing on the individual nodes in the linked list (the StackNode

class).

Let’s begin with the StackNode class. Each node in the linked list contains a stack element and

a reference to the node containing the next element in the list.

Access to the StackNode class is restricted to classes in the Lab5 package (or subdirectory).

Classes not in the Lab5 package are blocked from referencing linked list nodes directly because

all the members of StackNode do not have an access label (public, private, or protected). These

properties are reflected in the following incomplete class definition from the file

StackNode.jshl.

// Facilitator class for the Stack class
class StackNode // A singly linked list node
{
 // Data members
 private Object element; // Object for this node
 private StackNode next; // Reference to next node in list

 // Because there are no access labels (public, private, or protected),
 // access is limited to the package where these methods are declared

 // Constructor
 StackNode(Object newElement, StackNode nextval)
 { }

 // Class methods --
 // Other classes in this package need to know about next and element
 // or set next
 StackNode getNext() // Returns reference to next node
 { }
 Object getElement() // Returns element's value
 { }
 void setNext(StackNode nextVal) // Sets value of next
 { }

} // class StackNode

The StackNode class constructor is used to add nodes to the stack. The statement below, for

example, adds a node containing ‘d’ to a stack of characters. Note that ‘d’ is a primitive data type

(char), which must be converted to an Object by using the wrapper class Character.

top = new StackNode(new Character('d'), top);

LABORATORY 5

112

The new operator allocates memory for a linked list node and calls the StackNode constructor,

passing both the element to be inserted (new Character('d')) and a reference to the next node

in the list (top).

Finally, the assignment operator assigns the reference to the newly allocated node to top,

thereby completing the creation and linking of the node.

The methods of the LStack class also implement the operations in the Stack ADT. A reference is

maintained to the node at the beginning of the linked list or, equivalently, the top of the stack.

The following incomplete definition for the LStack class is given in the file LStack.jshl.

class LStack implements Stack // Linked stack class
{
 // Data member
 private StackNode top; // Reference to top of stack

 // Constructors and helper method setup
 public LStack() // Default Constructor1
 { }
 public LStack(int size) // Constructor2: ignore size

// for compatibility with AStack
 { }

 // Class methods
 private void setup() // Called by Constructors only
 { }

 //----- Insert method implementations for the interface Stack here -----//

} // class LStack

Step 3: Implement the operations in the StackNode ADT and the LStack ADT using a singly

linked list to store the stack elements. Each node in the linked list should contain a stack ele-

ment (element) and a reference to the node containing the next element in the stack (next).

Your implementation also should maintain a reference to the node containing the topmost ele-

ment in the stack (top). Base your implementation on the incomplete class definitions in the

files LStack.jshl and StackNode.jshl.

c b a

top

d

c b a

top

d

LABORATORY 5

113

Step 4: Save your linked list implementation of the LStack ADT in the file LStack.java and of

the StackNode ADT in the file StackNode.java. Be sure to document your code.

LABORATORY 5

114

LABORATORY 5: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program in the file TestAStack.java allows you to interactively test your implemen-

tation of the AStack ADT using the following commands.

Step 1: Complete the following test plan form by adding test cases in which you

• pop an element from a stack containing only one element.

• push an element onto a stack that has been emptied by a series of pops.

• pop an element from a full stack (array implementation).

• clear the stack.

Step 2: Compile and run the test program TestAStack.java. Note that compiling this program

will compile your array implementation of the Stack ADT (in the file AStack.java) to produce

an array implementation for a stack of characters.

Step 3: Execute your test plan. If you discover mistakes in your array implementation of the

Stack ADT, correct them and execute your test plan again.

Step 4: Modify the test program so that your linked list implementation of the Stack ADT in

the file LStack.java is used in place of your array implementation. Rename the class

TestAStack as TestLStack and then save the file as TestLStack.java. Last, modify the code of

TestLStack.java to instantiate LStack objects instead of AStack objects.

Command Action

+x Push element x onto the top of the stack.

- Pop the top element and output it.

E Report whether the stack is empty.

F Report whether the stack is full.

C Clear the stack.

Q Exit the test program.

LABORATORY 5

115

Step 5: Compile and run the test program TestLStack.java. Note that this program will com-

pile your linked list implementation of the Stack ADT (in the file LStack.java) to produce a

linked list implementation for a stack of characters.

Step 6: Use your test plan to check your linked list implementation of the Stack ADT. If you

discover mistakes in your implementation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Series of pushes +a +b +c +d a b c d

Series of pops - - - a

More pushes +e +f a e f

More pops - - a

Empty? Full? E F false false

Empty the stack - Empty stack

Empty? Full? E F true false

Note: The topmost element is shown in bold.

Test Plan for the Operations in the Stack ADT

TEAMFL
Y

Team-Fly®

LABORATORY 5

116

LABORATORY 5: In-lab Exercise 1

Name

Hour/Period/Section

Date

Recall that length represents the maximum number of elements an array object in Java can

hold. Rather than have the array implementation of a stack grow upward from array entry 0

toward entry length - 1, you can just as easily construct an implementation that begins at

array entry length - 1 and grows downward toward entry 0. You could then combine this

“downward” array implementation with the “upward” array implementation you created in the

Prelab to form an implementation of a Double Stack ADT in which a pair of stacks occupy the

same array (assuming that the total number of elements in both stacks never exceeds length).

Step 1: Create an implementation of the Stack ADT using an array in which the stack grows

downward. Base your implementation on the incomplete class definition in the file AStack-

Dwn.jshl (these have identical method names as in the file AStack.jshl).

Step 2: Save your “downward” array implementation of the Stack ADT in the file AStack-

Dwn.java.

Step 3: Modify the test program TestAStack.java so that your “downward” array implementa-

tion of the Stack ADT in the file AStackDwn.java is used in place of your “upward” array imple-

mentation. Rename the class TestAStack as TestAStackDwn and then save the file as

TestAStackDwn.java. Last, modify the code of TestAStackDwn.java to instantiate AStackDwn

object instead of AStack objects.

Step 4: Use the test plan you created in the Bridge Exercise to check your “downward” array

implementation of the Stack ADT. If you discover mistakes in your implementation, correct

them and execute your test plan again.

LABORATORY 5

117

LABORATORY 5: In-lab Exercise 2

Name

Hour/Period/Section

Date

Whenever we set one object (or instance of a class) equal to another in an assignment

statement (e.g., stack1 = stack2), both variables (stack1 and stack2) refer to exactly the same

object or memory location. In other words, the effect of the assignment statement ‘stack1 =

stack2’ is to make stack1 refer to the same object that stack2 is already referring to. Therefore,

changes to either object will also change the other. This situation can cause some unexpected

results.

A programmer sometimes needs to make an exact but separate copy of an existing object. Sub-

sequent changes to the copy should not alter the original, nor should subsequent changes to the

original alter the copy.

Fortunately, in Java there are two ways to make an exact but separate copy of an object. One

approach is to specify exactly how a copy is to be created by including a copy constructor in

our Stack class. A copy constructor for the Stack class is described below.

Stack (Stack valueStack)

Precondition:

None.
Postcondition:

Copy constructor. Creates an exact but separate copy of valueStack.

Notice that, in the file TestLStack.java, the parameter in the call to the copy constructor must

be typecast to an LStack in order to call LStack’s copy constructor. In particular, this is nec-

essary because the copy constructor for LStack should only copy another LStack (never a dif-

ferent type of Stack such as an AStack). For an example of how this typecasting is done, refer to

the code for case '!': in the TestLStack.java file.

Another way to make an identical but separate copy of an object is to invoke clone() on that

object. Because clone() is declared in class Object, it is inherited by every Java object. If an

object does not implement the Cloneable interface, Object’s implementation of clone() will

throw the CloneNotSupportedException. Otherwise, a new instance of the object will be

created with all the fields initialized to values identical to the object being cloned, and a ref-

erence to the new object will be returned. However, be aware that the data type of the return

LABORATORY 5

118

value of the clone method is actually an Object. Therefore, we must apply a typecast to the

clone return value, converting it to the intended data type. The clone method for the Stack

class is described below.

Object clone()

Precondition:

None.
Postcondition:

Returns an exact but separate copy of type Object.

Notice that in the file TestLStack.java the Stack (testStack) must be typecast to a LStack in

order to call LStack’s clone method. In particular, this is necessary because clone will only be

defined in LStack and is not defined in the Stack interface. Also note that the return value for

clone, which is an Object, must be typecast to a Stack before it is used. To see how this is done

refer to the code for case '!': in the TestLStack.java file.

To implement the clone method for any class, you need to do the following:

1. Modify the class head by adding the words “implements Cloneable” to the end of the

class head. For example, to be able to implement clone() for the class MyStackClass,

you would type the following in the head of the definition of the class:

class MyStackClass implements Stack, Cloneable

Notice that since MyStackClass already implements Stack, we simply add a second

interface by separating it from the first with a comma.

2. Use super.clone to make a copy. An implementation of a clone method that can be

used for the LStack class can be found in the file clone.txt. Since Object’s clone

method throws the CloneNotSupportedException, this code includes an example of a

try block. After the try block is a catch block that catches and handles the

CloneNotSupportedException that may occur in the try block. This exception is

thrown by the clone method from Java’s Object class when a programmer tries to call

super.clone() without including the implements Cloneable clause as part of the class

definition.

Be aware that if you wish to clone an object that includes object references as part of its

instance data, you may have to do more work in clone than just calling super.clone(). In such

cases, you may want to consider using the copy constructor or study the use of clone in more

detail than is presented here.

Step 1: Implement the copy constructor and clone operations using the linked list representa-

tion of a stack and add it to the file LStack.java. An empty method implementation for the copy

constructor along with a comment indicating where to insert the clone operation from the

clone.txt file is included in the incomplete definition of the LStack class in the file LStack.jshl.

LABORATORY 5

119

Step 2: Modify the test program TestLStack.java as follows: Activate the “!” (call method)

command in the test program by removing the comment delimiters (/*! and !*/) from the lines

of code for the case '!' statement and from the lines of code for the dummy method. The defini-

tion of the dummy method is given at the end of the TestLStack.java file.

Step 3: Complete the following test plan by adding test cases that check whether your imple-

mentations of the copy constructor and clone correctly copy a single-element stack and an

empty stack.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the copy

constructor, correct them and execute the test plan again.

Test case Commands Expected result Checked

Copy a stack +a +b +c ! a b c

Copy a larger stack +a+b+c+d ! a b c d

Copy a smaller stack +a+b+c+d- - ! a b

Note: The topmost element is shown in bold.

Test Plan for the Copy Constructor and clone Operation

LABORATORY 5

120

LABORATORY 5: In-lab Exercise 3

Name

Hour/Period/Section

Date

We commonly write arithmetic expressions in infix form, that is, with each operator placed

between its operands, as in the following expression:

(3+4)*(5/2)

Although we are comfortable writing expressions in this form, infix form has the disadvantage

that parentheses must be used to indicate the order in which operators are to be evaluated.

These parentheses, in turn, greatly complicate the evaluation process.

Evaluation is much easier if we can simply evaluate operators from left to right. Unfortunately,

this left-to-right evaluation strategy will not work with the infix form of arithmetic expressions.

However, it will work if the expression is in postfix form. In the postfix form of an arithmetic

expression, each operator is placed immediately after its operands. The expression above is

written below in postfix form as

34+52/*

Note that both forms place the numbers in the same order (reading from left to right). The order

of the operators is different, however, because the operators in the postfix form are positioned

in the order that they are evaluated. The resulting postfix expression is hard to read at first, but

it is easy to evaluate. All you need is a stack on which to place intermediate results.

Suppose you have an arithmetic expression in postfix form that consists of a sequence of single

digit, nonnegative integers and the four basic arithmetic operators (addition, subtraction, multi-

plication, and division). This expression can be evaluated using the following algorithm in con-

junction with a stack of floating-point numbers.

Read in the expression character by character. As each character is read in,

• If the character corresponds to a single digit number (characters ‘0’ to ‘9’), then push the cor-

responding floating-point number onto the stack.

• If the character corresponds to one of the arithmetic operators (characters ‘+’, ‘–’, ‘*’, and ‘/’),

then

� Pop a number off of the stack. Call it operand1.

� Pop a number off of the stack. Call it operand2.

LABORATORY 5

121

� Combine these operands using the arithmetic operator, as follows

result = operand2 operator operand1

� Push result onto the stack.

• When the end of the expression is reached, pop the remaining number off the stack. This

number is the value of the expression.

Applying this algorithm to the arithmetic expression

34+52/*

yields the following computation:

'3': Push 3.0

'4': Push 4.0

'+': Pop, operand1 = 4.0

Pop, operand2 = 3.0

Combine, result = 3.0 + 4.0 = 7.0

Push 7.0

'5': Push 5.0

'2': Push 2.0

'/': Pop, operand1 = 2.0

Pop, operand2 = 5.0

Combine, result = 5.0 / 2.0 = 2.5

Push 2.5

'*': Pop, operand1 = 2.5

Pop, operand2 = 7.0

Combine, result = 7.0 * 2.5 = 17.5

Push 17.5

'\n': Pop, Value of expression = 17.5

Step 1: Create a program (call it PostFix.java) that reads the postfix form of an arithmetic

expression, evaluates it, and outputs the result. Assume that the expression consists of single-

digit, nonnegative integers (‘0’ to ‘9’) and the four basic arithmetic operators (‘+’, ‘–’, ‘*’, and ‘/’).

Further assume that the arithmetic expression is input from the keyboard with all the charac-

ters on one line. In PostFix.java, values of type float will be large enough for our purposes.

LABORATORY 5

122

Hints: a. Review the code for TestAStack.java to recall how to read in characters, deal with

whitespace and push an Object onto the stack.

b. To convert from Object to Float and then to the primitive float requires a cast and

the Float.floatValue() method. For example,

float operand1;
operand1 = ((Float)resultStack.pop()).floatValue();

c. To set precision to two decimal places, import java.text.DecimalFormat and use

code similar to the following:

float outResult;
DecimalFormat fmt = new DecimalFormat("0.##");
System.out.println(fmt.format(outResult));

Step 2: Complete the following test plan by filling in the expected result for each arithmetic

expression. You may wish to include additional arithmetic expressions in this test plan.

LABORATORY 5

123

Step 3: Execute the test plan. If you discover mistakes in your program, correct them and

execute the test plan again.

Test case
Arithmetic
expression Expected result Checked

One operator 34+

Nested operators 34+52/*

Uneven nesting 93*2+1-

All operators at end 4675-+*

Zero dividend 02/

Single-digit number 7

Test Plan for the Postfix Arithmetic Expression
Evaluation Program

LABORATORY 5

125

LABORATORY 5: Postlab Exercise 1

Name

Hour/Period/Section

Date

Given the input string “abc”, determine which permutations of this string can be output by a

code fragment consisting of only the statement pairs

ch = (char) System.in.read();
permuteStack.push(new Character(ch));

and

System.out.print(permuteStack.pop());

where ch is a character and permuteStack is a stack of characters. Note that each of the

statement pairs may be repeated several times within the code fragment and that the statement

pairs may be in any order. For instance, the code fragment

ch = (char) System.in.read();
permuteStack.push(new Character(ch));

ch = (char) System.in.read();
permuteStack.push(new Character(ch));

ch = (char) System.in.read();
permuteStack.push(new Character(ch));

System.out.print(permuteStack.pop());
System.out.print(permuteStack.pop());
System.out.print(permuteStack.pop());

outputs the string “cba”.

TEAMFL
Y

Team-Fly®

LABORATORY 5

126

Part A

For each of the permutations listed below, give a code fragment that outputs the permutation or

briefly explain why the permutation cannot be produced.

“abc” “acb”

“bac” “bca”

“cab” “cba”

LABORATORY 5

127

Part B

Given the input string "abcd", determine which permutations beginning with the character ‘d’

can be output by a code fragment of the form described above. Why can only these permuta-

tions be produced?

LABORATORY 5

128

LABORATORY 5: Postlab Exercise 2

Name

Hour/Period/Section

Date

In In-lab Exercise 3, you used a stack to evaluate arithmetic expressions. Describe another

application in which you might use the Stack ADT. What type of information does your appli-

cation store in each stack element?

129

LABORATORY 66

Queue ADT

OBJECTIVES

In this laboratory you

• create two implementations of the Queue ADT—one based on an array representation of a

queue, the other based on a singly linked list representation.

• create an array implementation of a deque.

• create a program that simulates the flow of customers through a line.

• analyze the memory requirements of your array and linked list queue representations.

OVERVIEW

This laboratory focuses on another constrained linear data structure, the queue. The elements

in a queue are ordered from least recently added (the front) to most recently added (the rear).

Insertions are performed at the rear of the queue, and deletions are performed at the front. You

use the enqueue operation to insert elements and the dequeue operation to remove elements. A

sequence of enqueues and dequeues is shown below.

The movement of elements through a queue reflects the “first in, first out” (FIFO) behavior that

is characteristic of the flow of customers in a line or the transmission of information across a

data channel. Queues are routinely used to regulate the flow of physical objects, information,

and requests for resources (or services) through a system. Operating systems, for example, use

queues to control access to system resources such as printers, files, and communications lines.

Queues also are widely used in simulations to model the flow of objects or information through

a system.

Enqueue a Enqueue b Enqueue c Dequeue Dequeue

a a b a b c b c c

←front ←front ←front ←front ←front

LABORATORY 6

130

Queue ADT

Elements

The elements in a queue are of generic type Object.

Structure

The queue elements are linearly ordered from least recently added (the front) to most recently

added (the rear). Elements are inserted at the rear of the queue (enqueued) and are removed

from the front of the queue (dequeued).

Constructors and their Helper Method

Queue ()

Precondition:

None.
Postcondition:

Default Constructor. Calls setup, which creates an empty queue and (if necessary) allocates

enough memory for a queue containing DEF_MAX_QUEUE_SIZE (a constant value) ele-

ments.

Queue (int size)

Precondition:

size > 0.
Postcondition:

Constructor. Calls setup, which creates an empty queue and (if necessary) allocates enough

memory for a queue containing size elements.

void setup (int size)

Precondition:

size > 0. A helper method for the constructors. Is declared private since only queue con-

structors should call this method.
Postcondition:

Creates an empty queue of a specific size (where applicable) based on the value of size

received from the constructor.

LABORATORY 6

131

Methods in the Interface

void enqueue (Object newElement)

Precondition:

Queue is not full and newElement is not null.
Postcondition:

Inserts newElement at the rear of a queue.

Object dequeue ()

Precondition:

Queue is not empty.
Postcondition:

Removes the least recently added (front) element from a queue and returns it.

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in a queue.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a queue is empty. Otherwise, returns false.

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a queue is full. Otherwise, returns false.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the elements in a queue. If the queue is empty, outputs “Empty queue”. Note that

this operation is intended for testing/debugging purposes only.

LABORATORY 6

133

LABORATORY 6: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 6

135

LABORATORY 6: Prelab Exercise

Name

Hour/Period/Section

Date

In this laboratory, you create two implementations of the Queue ADT. One of these implemen-

tations is based on an array, the other is based on a singly linked list. Just like the Stack ADT (in

Laboratory 5), a Queue ADT has a common interface that is in the file Queue.java and is

defined as follows:

public interface Queue // Constants & Methods common to queue ADTs
{
 // Default maximum queue size
 public static final int DEF_MAX_QUEUE_SIZE = 10;

 // Queue manipulation operations
 public void enqueue (Object newElement); // Enqueue element at rear
 public Object dequeue (); // Dequeue element from front
 public void clear (); // Remove all elements from queue

 // Queue status operations
 public boolean isEmpty (); // Is Queue empty?
 public boolean isFull (); // Is Queue full?
 public void showStructure (); // Outputs the elements in the stack

// For testing/debugging purposes only
} // interface Queue

The array-based queue cannot be efficiently implemented as a simple array. In a simple array-

based implementation of a list, all elements of the list must be stored in the first n positions of

the array. If we dequeue elements from the front of the array, then the remaining n elements in

the list must be shifted forward one position in the array. Shifting every element of the array

forward one position after each dequeue operation reduces the efficiency of the queue.

To make the array-based implementation of the queue more efficient, we will still require the

elements to be in contiguous array positions, but allow the contents of the queue to drift within

the array. Furthermore, we will allow the contents to drift in a circular fashion within the array.

Thus, the queue will eventually drift directly from the highest index or position in the array

(maxSize - 1) to index 0. This is easily implemented through the use of the modulus operator.

In this way, position maxSize -1 immediately precedes position 0 where position 0 is equivalent

to position maxSize % maxSize. An array that is used in this way is called a circular array.

TEAMFL
Y

Team-Fly®

LABORATORY 6

136

Step 1: Implement the methods (also called operations) in the Queue ADT using a circular

array to store the queue elements. Queues change in size; therefore, you need to store the max-

imum number of elements the queue can hold (maxSize) and the array index of the elements at

the front and rear of the queue (front and rear), along with the queue elements themselves

(element). To distinguish an empty queue from a queue with only one element in it, we will set

front and rear to an invalid index (such as –1) when the queue is empty. Base your implemen-

tation on the incomplete class definition from the file AQueue.jshl. You are to fill in the Java

code for each of the constructors and methods where the implementation braces are empty,

only partially filled (noted by “add code here … “), or where an entire method or set of methods

from the interface needs to be inserted (noted by “insert method … here”).

class AQueue implements Queue // Array-based queue class
{
 // Data members
 private int maxSize; // Maximum number of elements in the queue
 private int front; // Index of the front element
 private int rear; // Index of the rear element
 private Object [] element; // Array containing the queue elements

 // Constructors and helper method setup
 public AQueue () // Constructor: default size
 { }
 public AQueue (int size) // Constructor: sets size
 { }

 // Class methods
 private void setup(int size) // Called by Constructors only
 { }

 //----- Insert method implementations for the interface Queue here -----//

} // class AQueue

Step 2: Save your array implementation of the Queue ADT in the file AQueue.java. Be sure to

document your code.

Step 3: Implement the operations in the Queue ADT using a singly linked list to store the

queue elements. Each node in the linked list should contain a queue element (element) and a

reference to the node containing the next element in the queue (next). Your implementation

also should maintain references to the nodes containing the front and rear elements in the

queue (front and rear). In the LQueue constructors these front and rear references should be

initialized to null. Base your implementation on the following incomplete class definitions from

the file LQueue.jshl.

LABORATORY 6

137

// Facilitator class for the Queue class
class QueueNode // A singly linked list node
{
 // Data members
 private Object element; // Queue element
 private QueueNode next; // Pointer to the next element

 // Constructor
 QueueNode (Object elem, QueueNode nextPtr)
 { }

 // Class methods --
 // A client class (such as LQueue)
 // needs to know about next and element
 // & must be able to set the nextPtr as needed
 QueueNode getNext()
 { }
 Object getElement()
 { }
 void setNext(QueueNode nextPtr)
 { }

} // Class QueueNode

//--

class LQueue implements Queue // Linked list Queue class
{
 // Data members
 private QueueNode front, // Reference to the front element
 rear; // Reference to the rear element

 // Constructors and helper method setup
 public LQueue () // Constructor: default
 { }
 public LQueue (int size) // Constructor: ignore size
 { }

 // Class methods
 private void setup() // Called by constructor only
 { } // Initializes front and rear to null

 //----- Insert method implementations for the interface Queue here -----//

} // Class LQueue

Step 4: Save your linked list implementation of the Queue ADT in the file LQueue.java. Be

sure to document your code.

LABORATORY 6

138

LABORATORY 6: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program in the file TestAQueue.java allows you to interactively test your implementa-

tions of the Queue ADT using the following commands.

Step 1: Complete the following test plan form by adding test cases in which you

• enqueue an element onto a queue that has been emptied by a series of dequeues

• combine enqueues and dequeues so that you “go around the end” of the array (array imple-

mentation)

• dequeue an element from a full queue (array implementation)

• clear the queue.

Step 2: Compile and run the test program. Note that compiling this program will compile your

array implementation of the Queue ADT (in the file AQueue.java) to produce an array imple-

mentation for a queue of characters.

Step 3: Execute your test plan. If you discover mistakes in your array implementation of the

Queue ADT, correct them and execute your test plan again.

Command Action

+x Enqueue element x.

— Dequeue an element and output it.

E Report whether the queue is empty.

F Report whether the queue is full.

C Clear the queue.

Q Exit the test program.

LABORATORY 6

139

Step 4: Modify the test program so that your linked list implementation of the Queue ADT in

the file LQueue.java is used in place of your array implementation. Rename the class

TestAQueue as TestLQueue and then save the file as TestLQueue.java. Last, modify the code of

TestLQueue.java to instantiate LQueue objects instead of AQueue objects.

Step 5: Compile and run the test program TestLQueue.java. Note that compiling this program

will compile your linked list implementation of the Queue ADT (in the file LQueue.java) to pro-

duce a linked list implementation for a queue of characters.

Step 6: Use your test plan to check your linked list implementation of the Queue ADT. If you

discover mistakes in your implementation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Series of enqueues +a +b +c +d a b c d

Series of dequeues - - - d

More enqueues +e +f d e f

More dequeues - - f

Empty? Full? E F false false

Empty the queue - Empty queue

Empty? Full? E F true false

Note: The front element is shown in bold.

Test Plan for the Operations in the Queue ADT

LABORATORY 6

140

LABORATORY 6: In-lab Exercise 1

Name

Hour/Period/Section

Date

A deque (or double-ended queue) is a linear data structure that allows elements to be inserted

and removed at both ends. Adding the operations described below will transform your Queue

ADT into a Deque ADT.

void putFront (Object newElement)

Precondition:

Queue is not full and newElement is not null.
Postcondition:

Inserts newElement at the front of a queue. The order of the pre-existing elements is left

unchanged.

Object getRear ()

Precondition:

Queue is not empty.
Postcondition:

Removes the most recently added (rear) element from a queue and returns it. The remain-

der of the queue is left unchanged.

Step 1: Implement these operations using the array representation of a queue and add them

to the file AQueue.java. Empty method implementations for these operations are included in

the definition of the Queue class in the file AQueue.jshl.

Step 2: Activate the “>” (put in front) and “=” (get from rear) commands in the test program

TestAQueue.java by removing the comment delimiter (and the character “>” or “=”) from the

lines that begin with “//>” and “//=”. Notice that in each of these cases in TestAQueue.java

testQueue, which is of type Queue, must be typecast to AQueue since the methods putFront,

and getRear are not declared in the Queue interface.

Step 3: Complete the following test plan by adding test cases in which you

• insert an element at the front of a newly emptied queue.

• remove an element from the rear of a queue containing only one element.

• “go around the end” of the array using each of these operations.

• mix putFront and getRear with enqueue and dequeue.

LABORATORY 6

141

Step 4: Execute your test plan. If you discover mistakes in your implementation of these oper-

ations, correct them and execute the test plan again.

Test case Commands Expected result Checked

Series of calls to putFront >a >b >c >d d c b a

Series of calls to getRear = = = d

More calls to putFront >e >f f e d

More calls to getRear = = f

Note: The front element is shown in bold.

Test Plan for the putFront and getRear Operations

LABORATORY 6

142

LABORATORY 6: In-lab Exercise 2

Name

Hour/Period/Section

Date

When a queue is used as part of a model or simulation, the modeler is often very interested in

how many elements are on the queue at various points in time. This statistic is produced by the

following operation.

int length ()

Precondition:

None.
Postcondition:

Returns the number of elements in a queue.

Step 1: Create an implementation of this operation using the array representation of a queue

and add it to the file AQueue.java. An empty method implementation for this operation is

included in the definition of the Queue class in the file AQueue.jshl.

Step 2: Activate the “#” (length) command in the test program TestAQueue.java by removing

the comment delimiter (and the character “#”) from the lines that begin with “//#”. As with

putFront and getRear, notice that in this case in TestAQueue.java testQueue, which is of type

Queue, must be typecast to AQueue since the method length is not declared in the Queue

interface.

Step 3: Complete the following test plan by adding test cases in which you check the length of

empty queues and queues that “go around the end” of the array.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the length

operation, correct them and execute the test plan again.

LABORATORY 6

143

Test case Commands Expected result Checked

Series of enqueues +a +b +c +d a b c d

Length # 4

Series of dequeues - - - d

Length # 1

More enqueues +e +f d e f

Length # 3

Note: The front element is shown in bold.

Test Plan for the Length Operation

LABORATORY 6

144

LABORATORY 6: In-lab Exercise 3

Name

Hour/Period/Section

Date

In this exercise, you use a queue to simulate the flow of customers through a checkout line in a

store. In order to create this simulation, you must model both the passage of time and the flow

of customers through the line. You can model time using a loop in which each pass corresponds

to a set time interval—one minute, for example. You can model the flow of customers using a

queue in which each element corresponds to a customer in the line.

In order to complete the simulation, you need to know the rate at which customers join the

line, as well as the rate at which they are served and leave the line. Suppose the checkout line

has the following properties.

• One customer is served and leaves the line every minute (assuming there is at least one cus-

tomer waiting to be served during that minute).

• Between zero and two customers join the line every minute, where there is a 50% chance that

no customers arrive, a 25% chance that one customer arrives, and a 25% chance that two cus-

tomers arrive.

You can simulate the flow of customers through the line during a time period n minutes long

using the following algorithm.

Initialize the queue to empty.
for (minute = 0 ; minute < n ; minute++)
{
 If the queue is not empty, then remove the customer at the front of the queue.
 Compute a random number k between 0 and 3.
 If k is 1, then add one customer to the line. If k is 2, then add two customers
 to the line. Otherwise (if k is 0 or 3), do not add any customers to the line.
}

Step 1: Using the program shell given in the file StoreSim.jshl as a basis, create a program that

uses the Queue ADT to implement the model described above. Your program should update the

following information during each simulated minute, that is, during each pass through the loop:

• The total number of customers served

• The combined length of time these customers spent waiting in line

• The maximum length of time any of these customers spent waiting in line

LABORATORY 6

145

In order to compute how long a customer waited to be served, you need to store the “minute”

that the customer was added to the queue as part of the queue element corresponding to that

customer.

Step 2: Use your program to simulate the flow of customers through the line and complete the

following table. Note that the average wait is the combined waiting time divided by the total

number of customers served.

Take special note that, in this program shell, the length of the simulation, simLength, is read in

as an argument to the program itself. In other words, it is a value assigned to the args parameter

of the main method—now you know the use of the args array in the main method of your

program. This argument is entered as an additional string when you run your program from the

command line prompt. If your Java development system does not allow you to invoke your

program from the command line, you will need to determine how this argument is passed in the

particular Java development system you are using.

Since each args in main is a String array, args[0] must be converted to an int, which is the data

type assigned to the simLength. As illustrated in the statement below (which also appears in the

file StoreSim.jshl), this conversion is commonly done in Java by using the static method

parseInt in the class Integer.

simLength = Integer.parseInt(args[0]);

Java programmers use this parseInt method on a daily basis as a quick and easy way to convert

a String to an int in Java.

Time in minutes

Total number

of customers served Average wait Longest wait

30

60

120

480

TEAMFL
Y

Team-Fly®

LABORATORY 6

147

LABORATORY 6: Postlab Exercise 1

Name

Hour/Period/Section

Date

Part A

Given the following memory requirements

Integer 4 bytes

Address (reference) 4 bytes

and a queue containing 100 Integers, compare the amount of memory used by your array repre-

sentation of the queue with the amount of memory used by a singly linked list representation.

Assume that the array representation allows a queue to contain a maximum of 100 elements.

Part B

Suppose that you have ten queues of Integers. Of these ten queues, four are 50% full, and the

remaining six are 10% full. Compare the amount of memory used by your array representation

of these queues with the amount of memory used by a singly linked list representation. Assume

that the array representation allows a queue to contain a maximum of 100 elements.

LABORATORY 6

148

LABORATORY 6: Postlab Exercise 2

Name

Hour/Period/Section

Date

In In-lab Exercise 3, you used a queue to simulate the flow of customers through a line.

Describe another application where you might use the Queue ADT. What type of information

does your application store in each queue element?

149

LABORATORY 77

Singly Linked List
Implementation of the
List ADT
OBJECTIVES

In this laboratory you

• implement the List ADT using a singly linked list.

• examine how a fresh perspective on insertion and deletion can produce more efficient linked

list implementations of these operations.

• create a program that displays a slide show.

• analyze the efficiency of your singly linked list implementation of the List ADT.

OVERVIEW

In Laboratory 4, you created an implementation of the List ADT using an array to store the list

elements. Although this approach is intuitive, it is not terribly efficient either in terms of

memory usage or time. It wastes memory by allocating an array that is large enough to store

what you estimate to be the maximum number of elements a list will ever hold. In most cases,

the list is rarely this large and the extra memory simply goes unused. In addition, the insertion

and deletion operations require shifting elements back and forth within the array, a very time-

consuming task.

In this laboratory, you implement the List ADT using a singly linked list. This implementation

allocates memory element by element as elements are added to the list. Equally important, a

linked list can be reconfigured following an insertion or deletion simply by changing one or two

links.

List ADT

Elements

The elements in a list are of generic type Object.

LABORATORY 7

150

Structure

The elements form a linear structure in which list elements follow one after the other, from the

beginning of the list to its end. The ordering of the elements is determined by when and where

each element is inserted into the list and is not a function of the data contained in the list ele-

ments. At any point in time, one element in any nonempty list is marked using the list’s cursor.

You travel through the list using operations that change the position of the cursor.

Constructors and their Helper Method

List ()

Precondition:

None.
Postcondition:

Default Constructor. Creates an empty list.

List (int size)

Precondition:

None.
Postcondition:

Constructor. Creates an empty list. The argument is provided for call compatibility with the

array implementation, so size is ignored here.

void setup ()

Precondition:

A helper method for the constructors. Is declared private since only linked list constructors

should call this method.
Postcondition:

Creates an empty linked list.

Methods in the Interface

void insert (Object newElement)

Precondition:

List is not full, newElement is not null.
Postcondition:

Inserts newElement into a list. If the list is not empty, then inserts newElement after the

cursor. Otherwise, inserts newElement as the first (and only) element in the list. In either

case, moves the cursor to newElement.

LABORATORY 7

151

void remove ()

Precondition:

List is not empty.
Postcondition:

Removes the element marked by the cursor from a list. If the resulting list is not empty,

then moves the cursor to the element that followed the deleted element. If the deleted ele-

ment was at the end of the list, then moves the cursor to the beginning of the list.

void replace (Object newElement)

Precondition:

List is not empty and newElement is not null.
Postcondition:

Replaces the element marked by the cursor with newElement. The cursor remains at

newElement.

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in a list.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a list is empty. Otherwise, returns false.

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a list is full. Otherwise, returns false.

boolean gotoBeginning ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the beginning of the list and returns true.

Otherwise, returns false.

LABORATORY 7

152

boolean gotoEnd ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the end of the list and returns true. Other-

wise, returns false.

boolean gotoNext ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the end of a list, then moves the cursor to the next element in the list

and returns true. Otherwise, returns false.

boolean gotoPrior ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the beginning of a list, then moves the cursor to the preceding element

in the list and returns true. Otherwise, returns false.

Object getCursor ()

Precondition:

List is not empty.
Postcondition:

Returns a copy of the element marked by the cursor.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the elements in a list. If the list is empty, outputs “Empty list”. Note that this oper-

ation is intended for testing/debugging purposes only.

LABORATORY 7

153

LABORATORY 7: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 7

155

LABORATORY 7: Prelab Exercise

Name

Hour/Period/Section

Date

Your linked list implementation of the List ADT uses a pair of classes, SListNode and SList, to

represent individual nodes and the overall list structure, respectively. If you are unfamiliar with

this approach to linked lists, read the discussion in Laboratory 5: Prelab Exercise.

Step 1: Implement the operations in the List ADT using a singly linked list. Each node in the

linked list should contain a list element (element) and a reference to the node containing the

next element in the list (next). Your implementation also should maintain references to the

node at the beginning of the list (head) and the node containing the element marked by the cur-

sor (cursor). Base your implementation on the following class definitions from the files

SListNode.jshl and SList.jshl along with the set of methods that every list is expected to provide

(which is defined in the List interface in the file List.java).

// Facilitator class for the SList class
class SListNode // A singly linked list node
{
 // Data members
 private Object element; // List element
 private SListNode next; // Reference to the next element

 // Constructor
 SListNode(Object elem, SListNode nextPtr)
 { }

 // Class Methods used by client class
 SListNode getNext() // Return reference to next element
 { }
 SListNode setNext(SListNode nextVal)
 // Set reference to next element & return that reference
 { }
 Object getElement() // Return the element in the current node
 { }
 void setElement(Object newElem) // Set current element to newElem
 { }

 } // class SListNode

class SList implements List // Singly linked list implementation of the
// List ADT

{

TEAMFL
Y

Team-Fly®

LABORATORY 7

156

 // Data members
 private SListNode head, // Reference to the beginning of the list
 cursor; // Reference to current cursor position

 // Constructors & Helper Method
 public SList() // Default constructor: Creates an empty list
 { }
 public SList(int size) // Constructor: Creates an empty list, size is
 // ignored
 { }

 // Class methods
 private void setup()
 // Called by constructors only: Creates an empty list
 { }

 //——- Insert method definitions for the interface List here ——-//

} // class SList

You are to fill in the Java code for each of the constructors and methods where the implemen-

tation braces are empty, or an entire method or set of methods from the interface needs to be

inserted (noted by “insert method … here”).

Step 2: Save your implementation of the List ADT in the files SListNode.java and SList.java,

respectively. Be sure to document your code.

LABORATORY 7

157

LABORATORY 7: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program in the file TestSList.java allows you to interactively test your implementation

of the List ADT using the following commands.

Step 1: Complete the following test plan by adding test cases that check whether your imple-

mentation of the List ADT correctly determines whether a list is empty and correctly inserts

elements into a newly emptied list.

Step 2: Compile and run the test program. Note that compiling this program will compile your

linked list implementation of the List ADT (in the file SList.java) to produce an implementation

for a list of characters.

Command Action

+x Insert element x after the cursor.

- Remove the element marked by the cursor.

=x Replace the element marked by the cursor with element x.

@ Display the element marked by the cursor.

N Go to the next element.

P Go to the prior element.

< Go to the beginning of the list.

> Go to the end of the list.

E Report whether the list is empty.

F Report whether the list is full.

C Clear the list.

Q Quit the test program.

LABORATORY 7

158

Step 3: Execute your test plan. If you discover mistakes in your implementation of the List

ADT, correct them and execute your test plan again.

Test case Commands Expected result Checked

Insert at end +a +b +c +d a b c d

Travel from beginning < N N a b c d

Travel from end > P P a b c d

Delete middle element – a c d

Insert in middle +e +f +f a c e f f d

Remove last element > - a c e f f

Remove first element - c e f f

Display element @ Returns c

Replace element =g g e f f

Clear the list C Empty list

Note: The element marked by the cursor is shown in bold.

Test Plan for the Operations in the List ADT

LABORATORY 7

159

Step 4: Change the list in the test program (TestSList.java) from a list of characters to a list

of integers (or any other primitive data type—except char) by replacing the declaration

testElement with

String testElement = null; // List element

replacing the assignment statement for testElement further down in the code with

testElement = aToken;

and in statements with the words ‘new Character’, replacing Character with the word Integer.

Every wrapper class constructor except the Character class accepts a String argument. Thus,

the only change necessary to process a list of (say) doubles instead of the list of integers used in

this version of the program is the third replacement above—in statements with the words ‘new

Integer’, replacing Integer with the word Double. The testElement declaration and assignment

statements would remain unchanged unless you want to process a list of characters, which is

what the initial version of the program did.

Step 5: Replace the character data ('a' to 'g') in your test plan with integer values.

Step 6: Recompile and rerun the test program. Note that recompiling this program will com-

pile your implementation of the List ADT to produce an implementation for a list of integers.

Step 7: Execute your revised test plan using the revised test program. If you discover mistakes

in your implementation of the List ADT, correct them and execute your revised test plan again.

LABORATORY 7

160

LABORATORY 7: In-lab Exercise 1

Name

Hour/Period/Section

Date

In many applications, the order of the elements in a list changes over time. Not only are new

elements added and existing ones removed, but elements are repositioned within the list. The

following List ADT operation moves an element to the beginning of a list.

void moveToBeginning ()

Precondition:

List is not empty.
Postcondition:

Removes the element marked by the cursor from a list and reinserts the element at the

beginning of the list. Moves the cursor to the beginning of the list.

Step 1: Implement this operation and add it to the file SList.java. An incomplete implementa-

tion for this operation is included in the definition of the SList class in the file SList.jshl.

Step 2: Activate the “M” (move) command in the test program in the file TestSList.java by

removing the comment delimiter (and the character “M”) from the lines beginning with “//M”.

Step 3: Complete the following test plan by adding test cases that check whether your imple-

mentation of the moveToBeginning operation correctly processes attempts to move the first ele-

ment in a list as well as moves within a single-element list.

LABORATORY 7

161

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

moveToBeginning operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Set up list +a +b +c +d a b c d

Move last element M d a b c

Move second element N M a d b c

Move third element N N M b a d c

Note: The element marked by the cursor is shown in bold.

Test Plan for the moveToBeginning Operation

LABORATORY 7

162

LABORATORY 7: In-lab Exercise 2

Name

Hour/Period/Section

Date

Sometimes a more effective approach to a problem can be found by looking at the problem a

little differently. Consider the following List ADT operation.

void insertBefore (Object newElement)

Precondition:

List is not full.
Postcondition:

Inserts newElement into a list. If the list is not empty, then inserts newElement immediately

before the cursor. Otherwise, inserts newElement as the first (and only) element in the list.

In either case, moves the cursor to newElement.

You can implement this operation using a singly linked list in two very different ways. The

obvious approach is to iterate through the list from its beginning until you reach the node

immediately before the cursor and then to insert newElement between this node and the cursor.

A more efficient approach is to copy the element referenced by the cursor into a new node, to

insert this node after the cursor, and place newElement in the node pointed to by the cursor. This

approach is more efficient because it does not require you to iterate through the list searching

for the element immediately before the cursor.

Step 1: Implement the insertBefore operation using the second (more efficient) approach

and add it to the file SList.java. An incomplete implementation for this operation is included in

the definition of the SList class in the file SList.jshl.

Step 2: Activate the “#” (insert before) command in the test program in the file

TestSList.java by removing the comment delimiter (and the character “#”) from the lines

beginning with “//#”.

Step 3: Complete the following test plan by adding test cases that check whether your imple-

mentation of the insertBefore operation correctly handles insertions into single-element lists

and empty lists.

LABORATORY 7

163

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

insertBefore operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Set up list +a +b +c a b c

Insert in middle #d a b d c

Cascade inserts #e a b e d c

Insert after head P #f a f b e d c

Insert as head P #g g a f b e c

Note: The element marked by the cursor is shown in bold.

Test Plan for the insertBefore Operation

LABORATORY 7

164

LABORATORY 7: In-lab Exercise 3

Name

Hour/Period/Section

Date

List elements need not be one of Java’s built-in data types. Remember every class, including a

programmer-defined class, is a subclass of Java’s Object class. The following code fragment, for

example, defines the programmer-defined class Slide. As a subclass of the Object class, a slide is

another type of element that can be added to a list. Thus a slide show presentation can be rep-

resented as a list of slides.

class Slide
{
 // constants
 static final int SLIDE_HEIGHT = 10; // Slide dimensions
 static final int SLIDE_WIDTH = 36;

 // Data members
 private String [] image = // Slide image
 new String [SLIDE_HEIGHT];
 private long pause; // Seconds to pause

 public boolean read (BufferedReader bufFinReader)
 // Read a slide from the file. Returns false at EOF.
 { }
 public void display () // Display a slide and pause.
 { }
}

Step 1: Using the program shell given in the file SlideShow.jshl as a basis, create a program

that reads a list of slides from a file and displays the resulting slide show from beginning to end.

Your program should pause for the specified length of time after displaying each slide. It then

should clear the screen (by scrolling, if necessary) before displaying the next slide.

Assume that the file containing the slide show consists of repetitions of the following slide

descriptor,

Time

Row 1

Row 2

...

Row 10

LABORATORY 7

165

where Time is the length of time to pause after displaying a slide (in seconds) and Rows 1 to 10

form a slide image (each row is 35 characters long).

Note that list elements of type Slide will not cause problems with the routines in your imple-

mentation of the List ADT, with the exception of the showStructure operation. Simply choose

not to call showStructure in your slide show implementation or inactivate this operation by

commenting out the showStructure() method.

Step 2: Test your program using the slide show in the file slides.dat.

Test case Checked

Slide show in the file slides.dat

Test Plan for the Slide Show Program

TEAMFL
Y

Team-Fly®

LABORATORY 7

167

LABORATORY 7: Postlab Exercise 1

Name

Hour/Period/Section

Date

Given a list containing N elements, develop worst-case, order-of-magnitude estimates of the

execution time of the following List ADT operations, assuming they are implemented using a

singly linked list. Briefly explain your reasoning behind each estimate.

insert O()

Explanation:

remove O()

Explanation:

LABORATORY 7

168

gotoNext O()

Explanation:

remove O()

Explanation:

LABORATORY 7

169

LABORATORY 7: Postlab Exercise 2

Name

Hour/Period/Section

Date

Part A

In-lab Exercise 2 introduces a pair of approaches for implementing an insertBefore operation.

One approach is straightforward, whereas the other is somewhat less obvious but more effi-

cient. Describe how you might apply the latter approach to the remove operation. Use a diagram

to illustrate your answer.

LABORATORY 7

170

Part B

The resulting implementation of the remove operation has a worst-case, order-of-magnitude per-

formance estimate of O(N). Does this estimate accurately reflect the performance of this imple-

mentation? Explain why or why not.

171

LABORATORY 88

Doubly Linked List
Implementation of the
List ADT
OBJECTIVES

In this laboratory you

• implement the List ADT using a doubly linked list.

• create an anagram puzzle program.

• reverse a linked list.

• analyze the efficiency of your doubly linked list implementation of the List ADT.

OVERVIEW

The singly linked list implementation of the List ADT (like the one created in Laboratory 7) is

quite efficient when it comes to insertion and movement from one node to the next. It is not

nearly so efficient, however, when it comes to deletion and movement backward through the

list. In this laboratory, you will create an implementation of the List ADT using a circular,

doubly linked list. This implementation performs most of the List ADT operations in constant

time.

LIST ADT

Elements

The elements in a list are of generic type Object.

Structure

The elements form a linear structure in which list elements follow one after the other, from the

beginning of the list to its end. The ordering of the elements is determined by when and where

each element is inserted into the list and is not a function of the data contained in the list ele-

ments. At any point in time, one element in any nonempty list is marked using the list’s cursor.

You travel through the list using operations that change the position of the cursor.

LABORATORY 8

172

Constructors and their Helper Method

List ()

Precondition:

None.
Postcondition:

Default Constructor. Creates an empty list.

List (int size)

Precondition:

None.
Postcondition:

Constructor. Creates an empty list. The argument is provided for call compatibility with the

array implementation, so size is ignored here.

void setup ()

Precondition:

A helper method for the constructors. Is declared private since only linked list constructors

should call this method.
Postcondition:

Creates an empty linked list.

Methods in the Interface

void insert (Object newElement)

Precondition:

List is not full, newElement is not null.
Postcondition:

Inserts newElement into a list. If the list is not empty, then inserts newElement after the

cursor. Otherwise, inserts newElement as the first (and only) element in the list. In either

case, moves the cursor to newElement.

void remove ()

Precondition:

List is not empty.
Postcondition:

Removes the element marked by the cursor from a list. If the resulting list is not empty,

then moves the cursor to the element that followed the deleted element. If the deleted ele-

ment was at the end of the list, then moves the cursor to the beginning of the list.

void replace (Object newElement)

Precondition:

List is not empty and newElement is not null.
Postcondition:

Replaces the element marked by the cursor with newElement. The cursor remains at new-

Element.

LABORATORY 8

173

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in a list.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a list is empty. Otherwise, returns false.

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a list is full. Otherwise, returns false.

boolean gotoBeginning ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the beginning of the list and returns true.

Otherwise, returns false.

boolean gotoEnd ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the end of the list and returns true. Other-

wise, returns false.

boolean gotoNext ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the end of a list, then moves the cursor to the next element in the list

and returns true. Otherwise, returns false.

boolean gotoPrior ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the beginning of a list, then moves the cursor to the preceding element

in the list and returns true. Otherwise, returns false.

LABORATORY 8

174

Object getCursor ()

Precondition:

List is not empty.
Postcondition:

Returns a copy of the element marked by the cursor.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the elements in a list. If the list is empty, outputs “Empty list”. Note that this oper-

ation is intended for testing/debugging purposes only.

LABORATORY 8

175

LABORATORY 8: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total TEAMFL
Y

Team-Fly®

LABORATORY 8

177

LABORATORY 8: Prelab Exercise

Name

Hour/Period/Section

Date

Each node in a doubly linked list contains a pair of references. One reference points to the node

that precedes the node (prior) and the other points to the node that follows the node (next).

The resulting DListNode class is similar to the SListNode class you used in Laboratory 7.

// Facilitator class for the DList class
class DListNode // A doubly linked list node
{
 // Data members
 private Object element; // List element
 private DListNode prior, // Reference to the previous element
 next; // Reference to the next element

 // Constructor
 DListNode(Object elem, DListNode priorPtr, DListNode nextPtr)
 { }

 // Class Methods used by client class
 DListNode getNext() // Return reference to next element
 { }
 DListNode setNext(DListNode nextVal)
 // Set reference to next element & return that reference
 { }
 DListNode getPrior() // Return reference to prior element
 { }
 DListNode setPrior(DListNode priorVal)
 // Set reference to prior element & return that reference
 { }
 Object getElement() // Return the element in the current node
 { }
 void setElement(Object elem)
 // Set value of the element in the current node
 { }

} // class DListNode

In a circular, doubly linked list, the nodes at the beginning and end of the list are linked

together. The next reference of the node at the end of the list points to the node at the

beginning, and the prior reference of the node at the beginning points to the node at the end.

Using a circular, doubly linked list simplifies the implementation. The next, prior, head, or

LABORATORY 8

178

cursor references are null only when the list is empty and there is no extra tail reference to

keep track of when inserting or removing elements.

Step 1: Implement the methods in the List ADT using a circular, doubly linked list. Base your

implementation on the incomplete class definition in the file DList.jshl and the interface for the

List ADT in the file List.java. You are to fill in the Java code for each of the constructors and

methods where the implementation braces are empty, or where an entire method or set of

methods from the interface needs to be inserted (noted by “insert method … here”).

Step 2: Save your implementation of the List ADT in the file DList.java. Be sure to document

your code.

LABORATORY 8

179

LABORATORY 8: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program is in the file TestDList.java. Please note that, as in some previous laboratory

exercises, eventually there will be several methods in this laboratory that are defined in the

class DList (and later DList2) that are not declared in the List interface. To compensate for this

discrepancy, in this case the test variable (testList) has been instantiated as a DList instead of

the more generic type List. The test program (TestDList.java) allows you to interactively test

your implementation of the List ADT using the following commands.

Step 1: Prepare a test plan for your implementation of the List ADT. Your test plan should

cover the application of each operation to elements at the beginning, middle, and end of lists

(where appropriate). A test plan form follows.

Command Action

+x Insert element x after the cursor.

- Remove the element marked by the cursor.

=x Replace the element marked by the cursor with element x.

@ Display the element marked by the cursor.

N Go to the next element.

P Go to the prior element.

< Go to the beginning of the list.

> Go to the end of the list.

E Report whether the list is empty.

F Report whether the list is full.

C Clear the list.

Q Quit the test program.

LABORATORY 8

180

Step 2: Execute your test plan. If you discover mistakes in your implementation of the List

ADT, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the Operations in the List ADT

LABORATORY 8

181

LABORATORY 8: In-lab Exercise 1

Name

Hour/Period/Section

Date

A list can be reversed in two ways: either you can relink the nodes in the list into a new

(reversed) order, or you can leave the node structure intact and exchange elements between

pairs of nodes. Use one of these strategies to implement the following List ADT operation.

void reverse ()

Precondition:

None.
Postcondition:

Reverses the order of the elements in a list.

Step 1: Implement this operation and add it to the file DList.java. An incomplete implementa-

tion for this operation is included in the definition of the DList class in the file DList.jshl.

Step 2: Activate the “R” (reverse) command in the test program in the file TestDList.java by

removing the comment delimiter (and the character “R”) from the lines that begin with “//R”.

Step 3: Prepare a test plan for the reverse operation that covers lists of various lengths,

including lists containing a single element. A test plan form follows.

LABORATORY 8

182

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

reverse operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the reverse Operation

LABORATORY 8

183

LABORATORY 8: In-lab Exercise 2

Name

Hour/Period/Section

Date

In many list applications, you need to know the number of elements in a list and the relative

position of the cursor. Rather than computing these attributes each time they are requested,

you can store this information in a pair of data members that you update whenever you insert

elements, remove elements, or move the cursor.

Step 1: Add the following data members (both are of type int) to the DList class definition in

the file DList.java. Rename the class DList2 and save the result in the file DList2.java.

size : The number of elements in a list.

pos : The numeric position of the cursor, where the list elements are numbered from

beginning to end, starting with 0.

Step 2: Modify the methods in your circular, doubly linked list implementation of the DList2

ADT so that they update these data members whenever necessary. Save your modified imple-

mentation in the file DList2.java.

Step 3: If you are to reference the size and pos data members within application programs,

you must have DList2 ADT operations that return these values. Add the following operations to

the DList2 class definition in the file DList2.java.

int length ()

Precondition:

None.
Postcondition:

Returns the number of elements in a list.

int position ()

Precondition:

List is not empty.
Postcondition:

Returns the position of the cursor, where the list elements are numbered from beginning to

end, starting with 0.

LABORATORY 8

184

Step 4: Implement these operations in the file DList2.java.

Step 5: Modify the test program in the file TestDList.java so that the routines that incorporate

your changes (in DList2.java) are used in place of those you created in the Prelab. Save the file

as TestDList2.java.

Step 6: Activate the “#” (length and position) command by removing the comment delimiter

(and the character “#”) from the lines that begin with “//#”.

Step 7: Prepare a test plan for these operations that checks the length of various lists (includ-

ing the empty list) and the numeric position of elements at the beginning, middle, and end of

lists. A test plan form follows.

LABORATORY 8

185

Step 8: Execute your test plan. If you discover mistakes in your implementation of these oper-

ations, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the length and position Operations

TEAMFL
Y

Team-Fly®

LABORATORY 8

186

LABORATORY 8: In-lab Exercise 3

Name

Hour/Period/Section

Date

Lists can be used as data members in other classes. In this exercise, you create an implemen-

tation of the Anagram Puzzle ADT described below using lists of characters to store both the

solution to the puzzle and the current puzzle configuration.

Anagram Puzzle ADT

Elements

Alphabetic characters.

Structure

The characters are arranged linearly. If rearranged properly they spell a specified English word.

Constructor and Methods

AnagramPuzzle (String answ, String init)

Precondition:

Strings answ and init are nonempty and contain the same letters (but in a different order).
Postcondition:

Constructor. Creates an anagram puzzle. String answ is the solution to the puzzle and string

init is the initial scrambled letter sequence. Hint: Use String.charAt(int j) to insert a new

Character into the DList. A variation of what was done in the call to insert in TestDList.java.

void shiftLeft ()

Precondition:

None.
Postcondition:

Shifts the letters in a puzzle left one position. The leftmost letter is moved to the right end of

the puzzle.

LABORATORY 8

187

void swapEnds ()

Precondition:

None.
Postcondition:

Swaps the letters at the left and right ends of a puzzle.

void display ()

Precondition:

None.
Postcondition:

Displays an anagram puzzle. Shows both the puzzle’s target word (goal or solution) and the

current state of its scrambled word (puzzle).

boolean solved ()

Precondition:

None.
Postcondition:

Returns true if a puzzle is solved. Otherwise returns false.

The code fragment below declares a puzzle in which the word “yes” is scrambled as “yse”. It

then shows how the puzzle is unscrambled to form “yes”.

String str1 = new String("yes");
String str2 = new String("yse");

AnagramPuzzle enigma = new AnagramPuzzle(str1, str2); // Word is "yes", start w/ "yse"
enigma.shiftLeft(); // Changes puzzle to "sey"
enigma.swapEnds(); // Changes puzzle to "yes"

Rather than having the solution to the puzzle encoded in the program, your puzzle program

allows the user to solve the puzzle by entering commands from the keyboard.

Step 1: Complete the anagram puzzle program shell given in the file AnagramPuzzle.jshl by

creating an implementation of the Anagram Puzzle ADT. Base your implementation on the fol-

lowing incomplete class definition.

class AnagramPuzzle
{
 // Data members
 private DList solution, // Solution to puzzle
 puzzle; // Current puzzle configuration

 // Constructor
 public AnagramPuzzle(String answ, String init) // Construct puzzle
 { }

LABORATORY 8

188

 // Class methods
 public void shiftLeft() // Shift letter left
 { }
 public void swapEnds() // Swap end letters
 { }
 public void display() // Display puzzle
 { }
 public boolean solved() // Puzzle solved?
 { }

} // class AnagramPuzzle

Use your circular, doubly linked list implementation of the List ADT to represent the lists of

characters storing the puzzle’s solution (solution) and its current configuration (puzzle).

Step 2: Test your anagram puzzle program by compiling the file TestAnagramPuzzle.java and

using the puzzles given in the following test plan.

Test case Checked

Puzzle word “yes” scrambled as “yse”

Puzzle word “right” scrambled as “irtgh”

Test Plan for the Anagram Puzzle Program

LABORATORY 8

189

LABORATORY 8: Postlab Exercise 1

Name

Hour/Period/Section

Date

Part A

Given a list containing N elements, develop worst-case, order-of-magnitude estimates of the

execution time of the following List ADT operations, assuming they are implemented using a

circular, doubly linked list. Briefly explain your reasoning behind each estimate.

insert O()

Explanation:

remove O()

Explanation:

LABORATORY 8

190

Part B

Would these estimates be the same for an implementation of the DList ADT based on a noncir-

cular, doubly linked list? Explain why or why not.

gotoPrior O()

Explanation:

remove O()

Explanation:

LABORATORY 8

191

LABORATORY 8: Postlab Exercise 2

Name

Hour/Period/Section

Date

Assume the following memory requirements

Character 2 bytes

Integer 4 bytes

Address (reference) 4 bytes

Part A

Given a list containing N integers, compare the amount of memory used by your singly linked

list representation of the list with the amount of memory used by your circular, doubly linked

list representation.

LABORATORY 8

192

Part B

Suppose the list contains N objects of class Slide whose data members are as follows:

class Slide
{
 // Data members
 private char image [slideHeight] [slideWidth]; // Slide image
 private int pause; // Seconds to pause

 // Class Constructor & Methods
 ...

} // class Slide

Compare the amount of memory used by your singly linked list representation of this list with

the amount of memory used by your circular, doubly linked representation.

193

LABORATORY 99

Ordered List

ADT

OBJECTIVES

In this laboratory you

• implement the Ordered List ADT using an array to store the list elements and a binary search

to locate elements.

• use inheritance to derive a new class from an existing one.

• create a program that reassembles a message that has been divided into packets.

• use ordered lists to create efficient merge and subset operations.

• analyze the efficiency of your implementation of the Ordered List ADT.

OVERVIEW

In an ordered list the elements are maintained in ascending (or descending) order based on the

data contained in the list elements. Typically, the contents of one field are used to determine

the ordering. This field is referred to as the key field, or the key. In this laboratory, we assume

that each element in an ordered list has a key that uniquely identifies the element—that is, no

two elements in any ordered list have the same key. As a result, you can use an element’s key to

efficiently retrieve the element from a list.

Ordered List ADT

The Ordered List ADT inherits from an array-based List ADT similar to the one created in Lab-

oratory 4. Therefore, the Ordered List ADT is a specialized version of the array-based List ADT.

It inherits all of the public and protected instance variables and methods defined by the array-

based List ADT and adds its own unique instance variables and methods as needed.

Elements

The elements in an ordered list are of generic type ListData. Each element has a key that

uniquely identifies the element. Elements usually include additional data. Objects in the

ordered list must support the six basic relational operators, as well as a method called key() that

returns an element’s key.

LABORATORY 9

194

Structure

The list elements are stored in ascending order based on their keys. For each list element E, the

element that precedes E has a key that is less than E’s key and the element that follows E has a

key that is greater than E’s key. At any point in time, one element in any nonempty list is

marked using the list’s cursor. You travel through the list using operations that change the

position of the cursor.

Constructors

OrdList ()

Precondition:

None.
Postcondition:

Default Constructor. Calls the default constructor of its superclass, which creates an empty

list. Allocates enough memory for a list containing DEF_MAX_LIST_SIZE (a constant value)

elements.

OrdList (int maxNumber)

Precondition:

None.
Postcondition:

Constructor. Calls the corresponding superclass constructor, which creates an empty list.

Allocates enough memory for a list containing maxNumber elements.

Methods (Many Override Methods in the Superclass)

void insert (ListData newElement)

Precondition:

List is not full.
Postcondition:

Inserts newElement in its appropriate position within a list. If an element with the same key

as newElement already exists in the list, then updates that element’s nonkey fields with

newElement’s nonkey fields. Moves the cursor to newElement.

ListData retrieve (int searchKey)

Precondition:

None.
Postcondition:

Searches a list for the element with key searchKey. If the element is found, then moves the

cursor to the element and returns its value. Otherwise, does not move the cursor and

returns null to indicate that searchElement is undefined.

LABORATORY 9

195

void remove ()

Precondition:

List is not empty.
Postcondition:

Removes the element marked by the cursor from a list. If the resulting list is not empty,

then moves the cursor to the element that followed the deleted element. If the deleted ele-

ment was at the end of the list, then moves the cursor to the beginning of the list.

void replace (ListData newElement)

Precondition:

List is not empty.
Postcondition:

Replaces the element marked by the cursor with newElement. Note that this entails remov-

ing the element and inserting newElement in its correct ordered-list position. Moves the

cursor to newElement.

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in a list.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a list is empty. Otherwise, returns false.

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a list is full. Otherwise, returns false.

boolean gotoBeginning ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the element at the beginning of the list and

returns true. Otherwise, returns false.

TEAMFL
Y

Team-Fly®

LABORATORY 9

196

boolean gotoEnd ()

Precondition:

None.
Postcondition:

If a list is not empty, then moves the cursor to the element at the end of the list and returns

true. Otherwise, returns false.

boolean gotoNext ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the end of a list, then moves the cursor to the next element in the list

and returns true. Otherwise, returns false.

boolean gotoPrior ()

Precondition:

List is not empty.
Postcondition:

If the cursor is not at the beginning of a list, then moves the cursor to the preceding element

in the list and returns true. Otherwise, returns false.

Object getCursor ()

Precondition:

List is not empty.
Postcondition:

Returns a copy of the element marked by the cursor.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the keys of the elements in a list. If the list is empty, outputs “Empty list”. Note that

this operation is intended for testing/debugging purposes only. It only supports keys that are

one of Java’s primitive data types (int, char, and so forth).

LABORATORY 9

197

LABORATORY 9: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 9

199

LABORATORY 9: Prelab Exercise

Name

Hour/Period/Section

Date

There is a great deal of similarity between the Ordered List ADT and the List ADT. In fact, with

the exception of the insert, retrieve, and replace operations, these ADTs are identical. Rather

than implementing the Ordered List ADT from the ground up, you can take advantage of these

similarities by using your array implementation of the List ADT from Laboratory 4 as a foun-

dation for an array implementation of the Ordered List ADT.

A key feature of Java is the ability to derive a new class from an existing one through inher-

itance. The derived class (or subclass) inherits the public and protected methods and data

members of the existing base class (or superclass) and can have its own methods and data

members, as well. The following incomplete definitions from the file OrdList.jshl derives a class

called OrdList from the ListArray class.

class OrdList extends ListArray
{
 // Constructors
 public OrdList()
 public OrdList(int maxNumber)

 // Modified (or new) list manipulation methods
 public void insert (ListData newElement)
 public ListData retrieve (int searchKey)
 public void replace (ListData newElement)

 // Output the list structure -- used in testing/debugging
 public void showStructure ()

 // Facilitator method
 // Locates an element (or where it should be) based on its key
 private boolean binarySearch (int searchKey, int index)

} // class OrdList

The declaration

class OrdList extends ListArray

indicates that OrdList is derived from ListArray.

LABORATORY 9

200

You want the member methods in OrdList—the insert() method, in particular—to be able to

refer to ListArray’s private data members, so you must change the data members in the

ListArray class definition (in Laboratory 4) from private to protected, as follows.

class ListArray implements List
{

// Constants
// Default maximum list size
static final int DEF_MAX_LIST_SIZE = 10;

// Data Members
protected int size, // Actual number of elements in the list
 cursor; // Cursor array index
protected Object [] element; // Array containing the list elements

...

}

Private ListArray data members can only be accessed by ListArray methods. Protected

ListArray data members, on the other hand, can be accessed by the methods in any class that is

derived from ListArray—OrdList, in this case.

Through inheritance an OrdList object can call any of the ListArray’s public and protected

methods, as well as any of its own methods. The OrdList class supplies its own constructor, as well

as a pair of new methods: a public member method retrieve() that retrieves an element based on

its key and a private member facilitator method binarySearch() that locates an element in the

array using a binary search. The OrdList class also includes its own versions of the insert() and

replace() public methods. In Java, when a method in a subclass has the same name and type sig-

nature as a method in the superclass, then the method in the subclass is said to override the

method in the superclass. When an overridden method is called from inside a subclass, it will

always refer to the version of the method defined by the subclass. The version of the method

defined by the superclass will be hidden but can be called by prefixing the method name with the

keyword super followed by the dot operator. For example, the following statement

super.insert(newElement);

written in a method inside of the OrdList class definitions indicates that you wish to call

insert() in the ListArray superclass from within the subclass OrdList. As illustrated above,

using the word super is the way to refer to OrdList’s immediate superclass.

An incomplete class definition for the ListArray class containing the changes specified above is

given in the file ListArray.jshl. The interface for the List class is provided in the file List.java.

The following programs for the class ListData and the class TestAccount reads in the account

number and balance for a set of accounts and, using the OrdList object accounts, outputs the

list of accounts in ascending order based on their account numbers. As you review this code,

pay special attention to the Java statements that are used to read in values for acctNum and

balance input from the keyboard. Once the account information is correctly read and inserted

into the OrdList (accounts), printing the list of accounts in ascending order is trivial.

LABORATORY 9

201

class ListData
{

// Data Members
public int acctNum; // (Key) Account number
public double balance; // Account balance

// Methods
public int key ()
{ return acctNum; } // Returns the key

} // class ListData

// ---
import java.io.*;

class TestAccount
{

public static void main(String args[]) throws IOException
{

 OrdList accounts = new OrdList(); // List of accounts
 ListData acct; // A single account
 String str; // Line read from msg file

 // Initialize reader and tokenizer for the input stream -
 // for reading 'tokens' (namely acctNum and balance)
 // input from the keyboard.
 //
 // Initialize reader - To read a character at a time
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));

 // Initialize the tokenizer - To read tokens
 StreamTokenizer tokens = new StreamTokenizer(reader);

 // Note: use the nextToken() method to step through a stream of tokens.
 // Use nval with the tokenizer to obtain the number read.
 // Since nval is of type double, cast it to an int for acctNum.

 // Read in information on set of accounts.
 System.out.println();
 System.out.println("Enter account information (acctNum balance) " +
 "-- end with EOF : ");

 // Keep reading as long as a string (the word EOF) has not been entered
 while (tokens.nextToken() != tokens.TT_WORD)
 {
 acct = new ListData();
 acct.acctNum = (int)tokens.nval;
 tokens.nextToken();
 acct.balance = tokens.nval;
 accounts.insert(acct);
 }

LABORATORY 9

202

 // Output the accounts in ascending order based on their account
 // numbers.
 System.out.println();
 if (accounts.gotoBeginning())
 do
 {
 acct = (ListData)accounts.getCursor();
 System.out.println(acct.acctNum + " " + acct.balance);
 }
 while (accounts.gotoNext());
}

} // class TestAccount

The ListData class includes a key() method that returns an account’s key field—its account

number. This method is used by the OrdList class to order the accounts as they are inserted.

Insertion is done using the OrdList class insert() method, but list traversal is done using the

inherited ListArray class gotoBeginning() and gotoNext() methods.

Step 1: Implement the operations in the Ordered List ADT and the revised array-based List

ADT. Base your implementation on the incomplete class definitions from the files OrdList.jshl

and ListArray.jshl. The interface for the List class is provided in the file List.java.

Note that you only need to create implementations of the constructors, insert, replace, and

retrieve operations for the Ordered List ADT; the remainder of the operations are inherited

from your array implementation of the ListArray ADT. Your implementations of the insert and

retrieve operations should use the binarySearch() method to locate an element. An implemen-

tation of the binary search algorithm and the showStructure operation is given in the file

OrdList.jshl.

If you did not complete Laboratory 4 earlier, then implement each method in the ListArray

class according to the method comments given in ListArray.jshl along with the descriptions

given in this laboratory for the Ordered List ADT methods that are not overridden by the

OrdList class. Descriptions for all the OrdList class methods (inherited, overridden, and those

unique to OrdList) are given at the beginning of this laboratory.

Step 2: Save your implementation of the Ordered List ADT and the array-based List ADT in

the files OrdList.java and ListArray.java, respectively. Be sure to document your code.

LABORATORY 9

203

LABORATORY 9: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program in the file TestOrdList.java allows you to interactively test your implemen-

tation of the Ordered List ADT using the following commands.

Step 1: Prepare a test plan for your implementation of the Ordered List ADT. Your test plan

should cover the application of each operation to elements at the beginning, middle, and end of

lists (where appropriate). A test plan form follows.

Command Action

+key Insert (or update) the element with the specified key.

?key Retrieve the element with the specified key and output it.

- Remove the element marked by the cursor.

@ Display the element marked by the cursor.

=key Replace the element marked by the cursor.

N Go to the next element.

P Go to the prior element.

< Go to the beginning of the list.

> Go to the end of the list.

E Report whether the list is empty.

F Report whether the list is full.

C Clear the list.

Q Quit the test program.

LABORATORY 9

204

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them

and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the Operations in the Ordered List ADT

LABORATORY 9

205

Laboratory 9: In-lab Exercise 1

Name

Hour/Period/Section

Date

Suppose you wish to combine the elements in two ordered lists into one ordered list of a fixed

size. You could use repeated calls to the insert operation to insert the elements from one list

into the other. However, the resulting process would not be very efficient. A more effective

approach is to use a specialized merge operation that takes advantage of the fact that the lists

are ordered.

void merge (OrdList fromL)

Precondition:

The merged elements must fit within the receiving list.
Postcondition:

A single pass merges the elements in fromL with the elements in another ordered list. Does

not change fromL. Moves cursor in merged list to the beginning of the list. The final merged

list contains no duplicate keys, even if the initial lists had keys in common. When there are

duplicate keys, a costly second pass through the merged list is required.

Even before you begin to merge the lists, you already know how much larger the merged list

might become. By traversing the lists in parallel, starting with their highest keys and working

backward, you can perform the merge in a single pass. Given two ordered lists alpha and beta

containing the keys

alpha : a d j t
beta : b e w

the call

alpha.merge(beta);

produces the following results.

alpha : a b d e j t w
beta : b e w

Or when there are common keys in the two lists such as

alpha : a d e t
beta : b e w

TEAMFL
Y

Team-Fly®

LABORATORY 9

206

the call to merge produces the following results.

alpha : a b d e t w
beta : b e w

Step 1: Implement this operation and add it to the file OrdList.java. An incomplete definition

for this operation is included in the definition of the Ordered List class in the file OrdList.jshl.

Step 2: Activate the implementation of ListData for In-lab 1 and 2 (in the file ListData.java)

by removing the comment markings (/* and */) from that definition for the class ListData and

by commenting out any other active definition for the class ListData. Only one definition of the

ListData class can be active when you run your program.

Activate the “M” (merge) command in the test program in the file TestOrdList2.java by

removing the comment delimiter (and the character “M”) from the lines that begin with “//M”.

Step 3: Prepare a test plan for the merge operation that covers lists of various lengths, includ-

ing empty lists and lists that combine to produce a full list. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the merge

operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the merge Operation

LABORATORY 9

207

LABORATORY 9: In-lab Exercise 2

Name

Hour/Period/Section

Date

A set of objects can be represented in many ways. If you use an unordered list to represent a

set, then performing set operations such as intersection, union, difference, and subset require

up to O(N2) time. By using an ordered list to represent a set, however, you can reduce the exe-

cution time for these set operations to O(N), a substantial improvement.

Consider the subset operation described below. If the sets are stored as unordered lists, this

operation requires that you traverse the list once for each element in subL. But if the sets are

stored as ordered lists, only a single traversal is required. The key is to move through the lists in

parallel.

boolean subset (OrdList subL)

Precondition:

None.
Postcondition:

Uses only a single traversal through the lists and does not change either list including the

cursor locations. Returns true if every key in subL is also in the calling list. Otherwise,

returns false.

Given three ordered lists alpha, beta, and gamma containing the keys

alpha : a b c d
beta : a c x
gamma : a b
delta : <empty list>

the call alpha.subset(beta) yields false (beta is not a subset of alpha), the call

alpha.subset(gamma) yields true (gamma is a subset of alpha), and the calls alpha.subset(delta)

and beta.subset(delta) yield true (the empty set is a subset of every set).

Step 1: Implement this operation and add it to the file OrdList.java. An incomplete definition

for this operation is included in the file OrdList.jshl. Uncomment this segment of the Ordered

List class definition before implementing it.

LABORATORY 9

208

Step 2: Activate the “S” (subset) command in the test program in the file TestOrdList2.java

by removing the comment delimiter (and the character “S”) from the lines that begin with

“//S”.

Step 3: Prepare a test plan for the subset operation that covers lists of various lengths, includ-

ing empty lists. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the subset

operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the subset Operation

LABORATORY 9

209

LABORATORY 9: In-lab Exercise 3

Name

Hour/Period/Section

Date

When a communications site transmits a message through a packet-switching network, it does

not send the message as a continuous stream of data. Instead, it divides the message into pieces,

called packets. These packets are sent through the network to a receiving site, which reas-

sembles the message. Packets may be transmitted to the receiving site along different paths. As

a result, they are likely to arrive out of sequence. In order for the receiving site to reassemble

the message correctly, each packet must include the relative position of the packet within the

message.

For example, if we break the message “A SHORT MESSAGE” into packets five characters long

and preface each packet with a number denoting the packet’s position in the message, the result

is the following set of packets.

1 A SHO
2 RT ME
3 SSAGE

No matter what order these packets arrive, a receiving site can correctly reassemble the

message by placing the packets in ascending order based on their position numbers.

Step 1: Using the file TestPacket.jshl, create a program that reassembles the packets con-

tained in a text file and outputs the corresponding message. Your program should use the

Ordered List ADT to assist in reassembling the packets in a message. Assume that each packet

in the message file contains a position number and five characters from the message (like the

packet format shown above). Base your program on the following ListData class definition for

each packet available in the file ListData.java. Since this file contains various implementations/

definitions for the list element, you will need to comment out other portions of this file and sub-

sequently remove the comment markings (/* and */) from the portion of this file that matches

the ListData definition shown below.

class ListData
{

// Constants
// Number of characters in a packet
public static final int PACKET_SIZE = 5;

// Data Members
int position; // (Key) Packet's position w/in message
char [] body = new char[PACKET_SIZE]; // Characters in the packet

LABORATORY 9

210

// Methods
int key ()
{ return position; } // Returns the key field

} // class ListData

Step 2: Test your program using the message in the text file message.dat.

Test case Checked

Message in the file message.dat

Test Plan for the Message Processing Program

LABORATORY 9

211

LABORATORY 9: Postlab Exercise 1

Name

Hour/Period/Section

Date

Part A

Given an ordered list containing N elements, develop worst-case, order-of-magnitude estimates

of the execution time of the steps in the insert operation, assuming this operation is imple-

mented using an array in conjunction with a binary search. Briefly explain your reasoning

behind each estimate.

Find the insertion point O()

Insert the element O()

Entire operation O()

Explanation:

Array Implementation of the insert Operation

LABORATORY 9

212

Part B

Suppose you had implemented the Ordered List ADT using a singly linked list, rather than an

array. Given an ordered list containing N elements, develop worst-case, order-of-magnitude esti-

mates of the execution time of the steps in the insert operation. Briefly explain your reasoning

behind each estimate.

Find the insertion point O()

Insert the element O()

Entire operation O()

Explanation:

Linked List Implementation of the insert Operation

LABORATORY 9

213

LABORATORY 9: Postlab Exercise 2

Name

Hour/Period/Section

Date

In specifying the Ordered List ADT, we assumed that no two elements in an ordered list have

the same key. What changes would you have to make to your implementation of the Ordered

List ADT in order to support ordered lists in which multiple elements have the same key?

215

LABORATORY 1010

Recursion with

Linked Lists

OBJECTIVES

In this laboratory you

• examine how recursion can be used to traverse a linked list in either direction.

• use recursion to insert, delete, and move elements in a linked list.

• convert recursive routines to iterative form.

• analyze why a stack is sometimes needed when converting from recursive to iterative form.

OVERVIEW

Recursive methods—methods that call themselves—provide an elegant way of describing and

implementing the solutions to a wide range of problems, including problems in mathematics,

computer graphics, compiler design, and artificial intelligence. Let’s begin by examining how

you develop a recursive method definition using the factorial calculation as an example.

You can express the factorial of a positive integer n using the following iterative formula:

Applying this formula to 4! yields the product 4�3�2�1. If you regroup the terms in this product

as 4�(3�2�1) and note that 3! = 3�2�1, then you find that 4! can be written as 4�(3!). You can gen-

eralize this reasoning to form the following recursive definition of factorial:

where 0! is defined to be 1. Applying this definition to the evaluation of 4! yields the following

sequence of computations.

n! n n 1–()• n 2–()• …• 1•=

n! n n 1–()!⋅=

4! 4 3!()⋅=

4 3 2!()⋅()⋅=

4 3 2 1!()⋅()⋅()⋅=

4 3 2 1 0!()⋅()⋅()⋅()⋅=

4 3 2 1 1()⋅()⋅()⋅()⋅=

TEAMFL
Y

Team-Fly®

LABORATORY 10

216

The first four steps in this computation are recursive, with n! being evaluated in terms of

(n � 1)!. The final step (0! = 1) is not recursive, however. The following notation clearly distin-

guishes between the recursive step and the nonrecursive step (or base case) in the definition of

n!.

The factorial() method below uses recursion to compute the factorial of a number.

long factorial (int n)
// Computes n! using recursion.
{
 long result; // Result returned

 if (n == 0)
 result = 1; // Base case
 else
 result = n * factorial(n-1); // Recursive step
 return result;
}

Let’s look at the call factorial(4). Because 4 is not equal to 0 (the condition for the base case),

the factorial() method issues the recursive call factorial(3). The recursive calls continue

until the base case is reached—that is, until n equals 0.

factorial(4)

↓ recursive step

 4*factorial(3)

↓ recursive step

 3*factorial(2)

↓ recursive step

 2*factorial(1)

↓ recursive step

 1*factorial(0)

↓ base case

 1

The calls to factorial() are evaluated in the reverse of the order they are made. The evaluation

process continues until the value 24 is returned by the call factorial(4).

n!
1

n n 1–()!⋅

=
if n 0= (base case)

if n 0> (recursive step)

LABORATORY 10

217

factorial(4)

↑ returns 24

 4*factorial(3)

↑ returns 6

 3*factorial(2)

↑ returns 2

 2*factorial(1)

↑ returns 1

 1*factorial(0)

↑ returns 1

 1

Recursion can be used for more than numerical calculations, however. The following pair of

methods traverse a linked list, outputting the elements encountered along the way.

void write ()
// Outputs the elements in a list from beginning to end.
{
 System.out.print("List : ");
 writeSub(head);
 System.out.println();
}

// -

void writeSub (SListNode p)
// Recursive partner of the write() method. Processes the sublist
// that begins with the node referenced by p.
{
 if (p != null)
 {
 System.out.print(p.getElement()); // Output element
 writeSub(p.getNext()); // Continue with next node
 }
}

The role of the write() method is to initiate the recursive process, which is then carried

forward by its recursive partner, the writeSub() method. Calling write() with the linked list of

characters

yields the following sequence of calls and outputs “abc”.

a b c

head

LABORATORY 10

218

writeSub(head)

↓ recursive step

 Output ‘a’ writeSub(p.getNext())

↓ recursive step

 Output ‘b’ writeSub(p.getNext())

↓ recursive step

 Output ‘c’ writeSub(p.getNext())

↓ base case

 No output

Recursion can also be used to add nodes to a linked list. The following pair of methods insert an

element at the end of a list.

void insertEnd (Object newElement)
// Inserts newElement at the end of a list. Moves the cursor to
// newElement.
{
 if (isEmpty())
 {
 head = new SListNode(newElement, null); // Only node in list
 cursor = head; // Move cursor
 }
 else
 insertEndSub(head, newElement);
}

// -

void insertEndSub (SListNode p, Object newElement)
// Recursive partner of the insertEnd() method. Processes the
// sublist that begins with the node referenced by p.getNext().
{
 if (p.getNext() != null)
 // Continue searching for end of list
 insertEndSub(p.getNext(), newElement);
 else
 {
 p.setNext(new SListNode(newElement, null)); // Insert new node
 cursor = p.getNext(); // Move cursor
 }
}

The insertEnd() method initiates the insertion process, with the bulk of the work being done

by its recursive partner, the insertEndSub() method. Calling insertEnd() to insert the char-

acter ‘!’ at the end of the following list of characters

yields the following sequence of calls.

a b c

head

LABORATORY 10

219

insertEndSub(head)

↓ recursive step

insertEndSub(p.getNext())

↓ recursive step

insertEndSub(p.getNext())

↓ recursive step

insertEndSub(p.getNext())

↓ base case

Create a new node containing ‘!’

On the last call, p.getNext() is null and the statement

p.setNext(new SListNode(newElement, null)); // Insert new node

is executed to create a new node containing the character ‘!’. This assignment sets the next ref-

erence in the last node in the list (‘c’) to the new node, thereby producing the list shown below.

Calling insertEnd() to insert the character ‘!’ into an empty list results in no call to the

insertEndSub() method. In this case, insertEnd() immediately assigns the address of the newly

created node to the list’s head reference.

a b !

head

c

head

!

LABORATORY 10

221

LABORATORY 10: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 10

223

LABORATORY 10: Prelab Exercise

Name

Hour/Period/Section

Date

In this laboratory you will reuse several files from previous laboratories. You can use Java’s

import statement to access these files by providing the path to the location of those files but it is

probably simpler (especially in the case of the SList.java file) to copy each of these files into the

package (or subdirectory) for this laboratory. Required files from previous laboratories are:

• Stack.java (Laboratory 5)

• AStack.java (Laboratory 5)

• List.java (Laboratory 7)

• SListNode.java (Laboratory 7)

• SList.java (Laboratory 7)

We begin by examining a set of recursive methods that perform known tasks. Incomplete imple-

mentations of these methods are collected in the file ListRec.jshl. The test program for these

methods is in the file Test10.java.

Part A

Step 1: Revise the singly linked list implementation of the List ADT in the file SList.java cop-

ied from Laboratory 7 so that the ListRec class for this laboratory can inherit from and use the

data members of the SList class. (A similar revision was made to the ListArray class when you

implemented the Ordered List ADT in Laboratory 9.)

Step 2: Complete part of the List ADT in the file ListRec.jshl by implementing the incomplete

methods write(), writeSub(), insertEnd(), and insertEndSub() discussed in the Overview sec-

tion of this laboratory. Incomplete implementations for these methods are included in the defi-

nition of the ListRec class in the file ListRec.jshl. Save the resulting implementation in the file

ListRec.java.

Step 3: Activate the calls to the write() and insertEnd() methods in the test program in the

file Test10.java by removing the comment delimiter (and the characters “PA”) from the lines

beginning with “//PA”.

LABORATORY 10

224

Step 4: Execute the write() and insertEnd() methods using the following list.

Step 5: What output does write() produce?

Step 6: What list does insertEnd() produce?

Step 7: Execute these methods using an empty list.

Step 8: What output does write() produce?

Step 9: What list does insertEnd() produce?

a b c

head

LABORATORY 10

225

Part B

One of the most common reasons for using recursion with linked lists is to support traversal of

a list from its end back to its beginning. The following pair of methods output each list element

twice, once as the list is traversed from beginning to end and again as it is traversed from the

end back to the beginning.

void writeMirror ()
// Outputs the elements in a list from beginning to end and back
{
 System.out.print("Mirror : ");
 writeMirrorSub(head);
 System.out.println();
}

// -

void writeMirrorSub (SListNode p)
// Recursive partner of the writeMirror() method. Processes the
// sublist that begins with the node referenced by p.
{
 if (p != null)
 {
 System.out.print(p.getElement()); // Output forward
 writeMirrorSub(p.getNext()); // Continue with next node
 System.out.print(p.getElement()); // Output backward
 }
}

Step 1: Complete this part of the List ADT in the file ListRec.jshl by implementing the meth-

ods writeMirror() and writeMirrorSub() as described above. Incomplete implementations for

these methods are included in the definition of the ListRec class in the file ListRec.jshl. Save

the resulting implementation in the file ListRec.java.

Step 2: Activate the call to the writeMirror() method in the test program in the file

Test10.java by removing the comment delimiter (and the characters “PB”) from the lines begin-

ning with “//PB”.

Step 3: Execute the writeMirror() method using the following list.

Step 4: What output does writeMirror() produce?

a b c

head

TEAMFL
Y

Team-Fly®

LABORATORY 10

226

Step 5: Describe what each statement in the writeMirrorSub() method does during the call in

which parameter p points to the node containing ‘a’.

Step 6: What is the significance of the call to writeMirrorSub() in which parameter p is null?

LABORATORY 10

227

Step 7: Describe how the calls to writeMirrorSub() combine to produce the “mirrored” out-

put. Use a diagram to illustrate your answer.

Part C

The following pair of methods reverse a list by changing each node’s next reference. Note that

the references are changed on the way back through the list.

void reverse ()
// Reverses the order of the elements in a list.
{
 reverseSub(null, head);
}

// -

void reverseSub (SListNode p, SListNode nextP)
// Recursive partner of the reverse() method. Processes the sublist
// that begins with the node referenced by nextP.
{
 if (nextP != null)
 {
 reverseSub(nextP, nextP.getNext()); // Continue with next node
 nextP.setNext(p); // Reverse link
 }
 else
 head = p; // Move head to end of list
}

LABORATORY 10

228

Step 1: Complete this part of the List ADT in the file ListRec.jshl by implementing the incom-

plete methods reverse() and reverseSub() as described above. Incomplete implementations for

these methods are included in the definition of the ListRec class in the file ListRec.jshl. Save

the resulting implementation in the file ListRec.java.

Step 2: Activate the call to the reverse() method in the test program by removing the com-

ment delimiter (and the characters “PC”) from the lines beginning with “//PC”.

Step 3: Execute the reverse() method using the following list.

Step 4: What list does reverse() produce?

Step 5: Describe what each statement in the reverseSub() method does during the call in

which parameter p references the node containing ‘a’. In particular, how are the links to and

from this node changed as result of this call?

Step 6: What is the significance of the call to reverseSub() in which parameter p is null?

a b c

head

LABORATORY 10

229

Step 7: Describe how the calls to reverseSub() combine to reverse the list. Use a diagram to

illustrate your answer.

Part D

In the Overview, you saw how you can use recursion to insert a node at the end of a list. The fol-

lowing pair of methods will delete the last node in a list.

void deleteEnd ()
// Deletes the element at the end of a list. Moves the cursor to the
// beginning of the list.
{
 deleteEndSub(head);
 cursor = head;
}

// -

void deleteEndSub (SListNode p)
// Recursive partner of the deleteEnd() method. Processes the
// sublist that begins with the node referenced by p.
{
 if (p.getNext().getNext() != null)
 deleteEndSub(p.getNext()); // Looking for the last node
 else
 {
 p.setNext(null); // Set p (link or head) to null
 }
}

LABORATORY 10

230

Step 1: Complete this part of the List ADT in the file ListRec.jshl by implementing the meth-

ods deleteEnd() and deleteEndSub() as described above. Incomplete implementations for these

methods are included in the definition of the ListRec class in the file ListRec.jshl. Save the

resulting implementation in the file ListRec.java.

Step 2: Activate the call to the deleteEnd() method in the test program by removing the com-

ment delimiter (and the characters “PD”) from the lines beginning with “//PD”.

Step 3: Execute the deleteEnd() method using the following list.

Step 4: What list does deleteEnd() produce?

Step 5: What is the significance of the calls to the deleteEndSub() method in which

p.getNext().getNext() is not null?

a b c

head

LABORATORY 10

231

Step 6: Describe what each statement in deleteEndSub() does during the call in which

p.getNext().getNext() is null. Use a diagram to illustrate your answer.

Step 7: What list does deleteEnd() produce when called with a list containing one element?

Describe how this result is accomplished. Use a diagram to illustrate your answer.

LABORATORY 10

232

Part E

The following pair of methods determine the length of a list. These methods do not simply

count nodes as they move through the list from beginning to end (as an iterative method

would). Instead, they use a recursive definition of length in which the length of the list refer-

enced by p is the length of the list referenced to by p.getNext() (the remaining nodes in the

list) plus one (the node referenced by p).

int length ()

// Returns the number of elements in a list.
{
 return lengthSub(head);
}

// -

int lengthSub (SListNode p)
// Recursive partner of the length() method. Processes the sublist
// that begins with the node referenced by p.
{
 int result; // Result returned

 if (p == null)
 result = 0; // End of list reached
 else
 result = (lengthSub(p.getNext()) + 1); // Number of nodes
 // after this one + 1
 return result;
}

Step 1: Activate the call to the length() method in the test program by removing the com-

ment delimiter (and the characters “PE”) from the lines beginning with “//PE”.

Step 2: Execute the length() method using the following list.

Step 3: What result does length() produce?

length p() 0 if p 0 (base case)=

length p.getNext()() 1+ if p 0 (recursive step)≠

=

a b c

head

LABORATORY 10

233

Step 4: What is the significance of the call to the lengthSub() method in which parameter p is

null?

Step 5: Describe how the calls to lengthSub() combine to return the length of the list. Use a

diagram to illustrate your answer.

Step 6: What value does the length() method return when called with an empty list? Describe

how this value is computed. Use a diagram to illustrate your answer.

LABORATORY 10

234

LABORATORY 10: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

Part A

The following pair of methods perform some unspecified action.

void unknown1 ()
// Unknown method 1.
{
 unknown1Sub(head);
 System.out.println();
}

// -

void unknown1Sub (SListNode p)
// Recursive partner of the unknown1() method.
{
 if (p != null)
 {
 System.out.print(p.getElement());
 if (p.getNext() != null)
 {
 unknown1Sub(p.getNext().getNext());
 System.out.print(p.getNext().getElement());
 }
 }
}

Step 1: Activate the call to the unknown1() method in the test program in the file Test10.java

by removing the comment delimiter (and the characters “BA”) from the lines beginning with

“//BA”.

Step 2: Execute the unknown1() method using the following list.

a b e

head

c d

LABORATORY 10

235

Step 3: What output does unknown1() produce?

Step 4: Describe what each statement in the unknown1Sub() method does during the call in

which parameter p references the node containing ‘a’.

Step 5: Describe how the calls to unknown1Sub() combine to output the list. Use a diagram to

illustrate your answer.

TEAMFL
Y

Team-Fly®

LABORATORY 10

236

Part B

The following pair of methods perform yet another unspecified action.

void unknown2 ()
// Unknown method 2.
{
 unknown2Sub(head);
}

// -

void unknown2Sub (SListNode p)
// Recursive partner of the unknown2() method.
{
 SListNode q;

 if (p != null && p.getNext() != null)
 {
 q = p;
 p = p.getNext();
 q.setNext(p.getNext());
 p.setNext(q);
 unknown2Sub(q.getNext());
 }
}

Step 1: Activate the call to the unknown2() method in the test program by removing the com-

ment delimiter (and the characters “BB”) from the lines beginning with “//BB”.

Step 2: Execute the unknown2() method using the following list.

Step 3: What list does unknown2() produce?

a b e

head

c d

LABORATORY 10

237

Step 4: Describe what each statement in the unknown2Sub() method does during the call in

which parameter p references the node containing ‘a’.

Step 5: Describe how the calls to unknown2Sub() combine to restructure the list. Use a diagram

to illustrate your answer.

LABORATORY 10

238

 LABORATORY 10: In-lab Exercise 1

Name

Hour/Period/Section

Date

Although recursion can be an intuitive means for expressing algorithms, there are times you

may wish to replace recursion with iteration. This replacement is most commonly done when

analysis of a program’s execution reveals that the overhead associated with a particular

recursive routine is too costly, either in terms of time or memory usage.

Part A

Replacing recursion in a routine such as the length() method (Prelab Exercise, Part E) is fairly

easy. Rather than using recursive calls to move through the list, you move a reference (of type

SListNode) from node to node. In the case of the length() method, this iterative process con-

tinues until you reach the end of the list.

The reverse() method (Prelab Exercise, Part C) presents a somewhat more challenging

problem. The iterative form of this routine moves a set of references through the list in a coor-

dinated manner. As these references move through the list, they reverse the links between pairs

of nodes, thereby reversing the list itself.

Step 1: Create an implementation of the reverse() method that uses iteration, in conjunction

with a small set of references, in place of recursion. Call this method iterReverse() and add it

to the file ListRec.java. An incomplete implementation of this method is included in the defini-

tion of the ListRec class in the file ListRec.jshl.

Step 2: Activate the call to the iterReverse() method in the test program in the file

Test10.java by removing the comment delimiter (and the characters “1A”) from the lines begin-

ning with “//1A”.

Step 3: Prepare a test plan for the iterReverse() method that covers lists of different lengths,

including lists containing a single element. A test plan form follows.

LABORATORY 10

239

Step 4: Execute your test plan. If you discover mistakes in your iterReverse() method, cor-

rect them and execute your test plan again.

Test case List Expected result Checked

Test Plan for the iterReverse() Method

LABORATORY 10

240

Part B

The writeMirror() method (Prelab Exercise, Part B) presents an even greater challenge. The

iterative form of this routine uses a stack to store references to the nodes in a list. This stack is

used in concert with an iterative process of the following form.

Stack tempStack = new AStack(10); // Stack of references
SListNode p; // Iterates through list
System.out.print("Mirror : ");
p = head;
while (p != null)
{
 System.out.print(p.getElement()); // Output element
 tempStack.push(p); // Push on stack
 p = p.getNext();
}
while (!tempStack.isEmpty())
{
 p = (SListNode)tempStack.pop(); // Pop off element
 System.out.print(p.getElement()); // Output it
}
System.out.println();

Step 1: Create an implementation of the writeMirror() method that uses iteration, in con-

junction with a stack, in place of recursion. Call the resulting method stackWriteMirror() and

add it to the file ListRec.java. An incomplete implementation of this method is included in the

definition of the ListRec class in the file ListRec.jshl. Base your stackWriteMirror() method on

one of your implementations of the Stack ADT from Laboratory 5.

Step 2: Prepare a test plan for the stackWriteMirror() method that covers lists of different

lengths, including lists containing a single element. A test plan form follows.

Step 3: Activate the call to the stackWriteMirror() method in the test program by removing

the comment delimiter (and the characters “1B”) from the lines beginning with “//1B”.

LABORATORY 10

241

Step 4: Execute your test plan. If you discover mistakes in your stackWriteMirror() method,

correct them and execute your test plan again.

Test case List Expected result Checked

Test Plan for the stackWriteMirror() Method

LABORATORY 10

242

LABORATORY 10: In-lab Exercise 2

Name

Hour/Period/Section

Date

You saw in the Prelab that you can use recursion to insert an element at the end of a list. You

also can use recursion to add elements at the beginning and middle of lists.

void aBeforeb ()

Precondition:

List contains characters.
Postcondition:

Inserts the character ‘a’ immediately before each occurrence of the character ‘b’. Does not

move the cursor.

Step 1: Create an implementation of the aBeforeb() method that is based on recursion—not

iteration—and add your implementation to the file ListRec.java. An incomplete implementa-

tion of this method is included in the definition of the ListRec class in the file ListRec.jshl.

Step 2: Prepare a test plan for this method that includes lists containing the character ‘b’ at

the beginning, middle, and end. A test plan form follows.

Step 3: Activate the call to the aBeforeb() method in the test program in the file

Test10.java by removing the comment delimiter (and the character “2”) from the lines begin-

ning with “//2”.

LABORATORY 10

243

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

aBeforeb() method, correct them and execute your test plan again.

Test case List Expected result Checked

Test Plan for the aBeforeb() Method

LABORATORY 10

244

LABORATORY 10: In-lab Exercise 3

Name

Hour/Period/Section

Date

You saw in the Prelab that you can use recursion to delete the element at the end of a list. You

also can use recursion to express the restructuring required following the deletion of elements

at the beginning and middle of lists.

void cRemove ()

Precondition:

List contains characters.
Postcondition:

Removes all the occurrences of the character ‘c’ from a list of characters. Moves the cursor

to the beginning of the list.

Step 1: Create an implementation of the cRemove() method that is based on recursion—not

iteration—and add it to the file ListRec.java. An incomplete implementation of this method is

included in the definition of the ListRec class in the file ListRec.jshl.

Step 2: Prepare a test plan for this method that includes lists containing the character ‘c’ at

the beginning, middle, and end. A test plan form follows.

Step 3: Activate the call to the cRemove() method in the test program in the file Test10.java by

removing the comment delimiter (and the character “3”) from the lines beginning with “//3”.

LABORATORY 10

245

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

cRemove() method, correct them and execute your test plan again.

Test case List Expected result Checked

Test Plan for the cRemove() Method

TEAMFL
Y

Team-Fly®

LABORATORY 10

247

LABORATORY 10: Postlab Exercise 1

Name

Hour/Period/Section

Date

One mistake we sometimes make when we first begin writing recursive routines is to use a

while loop in place of an if selection structure. Suppose we replace the if statement

if (p != null)
{
 System.out.print(p.getElement()); // Output forward
 writeMirrorSub(p.getNext()); // Continue with next node
 System.out.print(p.getElement()); // Output backward
}

in the writeMirrorSub() method (Prelab Exercise, Part B) with the while loop:

while (p != null)
{
 System.out.print(p.getElement()); // Output forward
 writeMirrorSub(p.getNext()); // Continue with next node
 System.out.print(p.getElement()); // Output backward
}

What would be the consequence of this change?

LABORATORY 10

248

LABORATORY 10: Postlab Exercise 2

Name

Hour/Period/Section

Date

It is often impossible to convert a recursive routine to iterative form without the use of a stack

(see In-lab Exercise 1). Explain why a stack is needed in the iterative form of the writeMirror()

method.

249

LABORATORY 1111

Expression

Tree ADT

OBJECTIVES

In this laboratory you

• create an implementation of the Expression Tree ADT using a linked tree structure.

• develop an implementation of the Logic Expression Tree ADT and use your implementation

to model a simple logic circuit.

• create a copy constructor and clone method that make an exact but separate copy of an

expression tree ADT.

• analyze how preorder, inorder, and postorder tree traversals are used in your implementation

of the Expression Tree ADT.

OVERVIEW

Although you ordinarily write arithmetic expressions in linear form, you treat them as hierar-

chical entities when you evaluate them. When evaluating the following arithmetic expression,

for example,

(1+3)*(6-4)

you first add 1 and 3, then you subtract 4 from 6. Finally, you multiply these intermediate

results together to produce the value of the expression. In performing these calculations, you

have implicitly formed a hierarchy in which the multiply operator is built upon a foundation

consisting of the addition and subtraction operators. You can represent this hierarchy explicitly

using the following binary tree. Trees such as this one are referred to as expression trees.

*

+

31

–

46

LABORATORY 11

250

Expression Tree ADT

Elements

Each node in an expression tree contains either an arithmetic operator or a numeric value.

Structure

The nodes form a tree in which each node containing an arithmetic operator has a pair of

children. Each child is the root node of a subtree that represents one of the operator’s operands.

Nodes containing numeric values have no children.

Constructor and Methods

ExprTree ()

Precondition:

None.
Postcondition:

Default Constructor. Creates an empty expression tree.

void build ()

Precondition:

None.
Postcondition:

Reads an arithmetic expression in prefix form from the keyboard and builds the correspond-

ing expression tree.

void expression ()

Precondition:

None.
Postcondition:

Outputs the corresponding arithmetic expression in fully parenthesized infix form.

float evaluate ()

Precondition:

Expression tree is not empty.
Postcondition:

Returns the value of the corresponding arithmetic expression.

LABORATORY 11

251

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in an expression tree.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs an expression tree with its branches oriented from left (root) to right (leaves)—that

is, the tree is output rotated counterclockwise 90 degrees from its conventional orientation.

If the tree is empty, outputs “Empty tree”. Note that this operation is intended for testing/

debugging purposes only. It assumes that arithmetic expressions contain only single-digit,

nonnegative integers and the arithmetic operators for addition, subtraction, multiplication,

and division.

We commonly write arithmetic expressions in infix form—that is, with each operator placed

between its operands, as in the following expression:

(1 + 3) * (6 - 4)

In this laboratory, you construct an expression tree from the prefix form of an arithmetic

expression. In prefix form, each operator is placed immediately before its operands. The

expression above is written in prefix form as

* + 1 3 - 6 4

When processing the prefix form of an arithmetic expression from left to right, you will, by defi-

nition, encounter each operator followed by its operands. If you know in advance the number of

operands that an operator has, you can use the following recursive process to construct the cor-

responding expression tree.

Read the next arithmetic operator or numeric value.

Create a node containing the operator or numeric value.

if the node contains an operator

 then Recursively build the subtrees that correspond to the

 operator’s operands.

 else The node is a leaf node.

If you apply this process to the arithmetic expression

*+13-64

LABORATORY 11

252

then construction of the corresponding expression tree proceeds as follows:

Read ‘*’

*

Read ‘+’

*

+

Read ‘1’

*

+

1

Read ‘3’

*

+

1 3

Read ‘–’

*

+

1 3

–

Read ‘6’

*

+

1 3

–

6

Read ‘4’

*

+

1 3

–

6 4

LABORATORY 11

253

Note that in processing this arithmetic expression we have assumed that all numeric values are

single-digit, nonnegative integers, and thus, that all numeric values can be represented as a

single character. If we were to generalize this process to include multidigit numbers, we would

have to include delimiters in the expression to separate numbers.

LABORATORY 11

255

LABORATORY 11: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total TEAMFL
Y

Team-Fly®

LABORATORY 11

257

LABORATORY 11: Prelab Exercise

Name

Hour/Period/Section

Date

In the Overview, you saw how the construction of an expression tree can be described using

recursion. In this exercise, you use recursive methods to implement the operations in the

Expression Tree ADT.

Step 1: Implement the operations in Expression Tree ADT using a linked tree structure and

save them in the file ExprTree.java. Assume that an arithmetic expression consists of single-

digit, nonnegative integers (‘0’ to ‘9’) and the four basic arithmetic operators (‘+’, ‘–’, ‘*’ and ‘/’).

Further assume that each arithmetic expression is input in prefix form from the keyboard with

all of the characters on one line.

As with the linear linked structures you developed in prior laboratories, your implementation of

the linked tree structure uses a pair of classes: one for the nodes in the tree (ExprTreeNode)

and one for the overall tree structure (ExprTree). Each node in the tree should contain a char-

acter (element) and a pair of references to the node’s children (left and right). Your implemen-

tation also should maintain a reference to the tree’s root node (root). Since all tree nodes are

similar, a TreeNode interface is used. This interface or one very similar to it, will also be used in

a future laboratory. The interface TreeNode is in the file TreeNode.java. Please note that

although there are no access designations in this particular interface file, in Java all methods

that implement an interface must be declared public.

Base your implementation on the following incomplete definitions from the files

ExprTreeNode.jshl and ExprTree.jshl. You are to fill in the Java code for each of the con-

structors and methods where the implementation braces are empty, or where an entire method

or set of methods from the interface needs to be inserted (noted by “insert method … here”).

class ExprTreeNode implements TreeNode
// Facilitator class for the ExprTree and LogiTree class
{
 // Data members
 private char element; // Expression tree element
 private TreeNode left, // Reference to the left child
 right; // Reference to the right child

 // Constructor
 public ExprTreeNode (char elem, TreeNode leftPtr,
 TreeNode rightPtr)
 { }

LABORATORY 11

258

 // Class Methods used by client class
 // ---Insert method implementations for the interface TreeNode here ---//

} // class ExprTreeNode

class ExprTree
{
 // Data member
 private TreeNode root; // Reference to the root node

 // Constructor
 public ExprTree ()
 { }

 // Expression tree manipulation methods
 public void build () // Build tree from prefix expression
 { }
 public void expression () // Output expression in infix form
 { }
 public float evaluate () // Evaluate expression
 { }
 public void clear () // Clear tree
 { }

 // Output the tree structure — used in testing/debugging
 public void showStructure ()
 { }

 // Recursive partners of the public member methods
 // Insert these methods here.
 private void showSub (TreeNode p, int level)
 { }

} // class ExprTree

Step 2: The definition of the ExprTree class in the file ExprTree.jshl does not include all the

recursive private methods needed by your implementation of the Expression Tree ADT. Add

these recursive private methods to the file ExprTree.java.

Step 3: Complete coding of all the methods and save your implementation of the Expression

Tree ADT in the file ExprTree.java. Be sure to document your code.

LABORATORY 11

259

LABORATORY 11: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

Test your implementation of the Expression Tree ADT using the test program in the file

TestExprTree.java.

Step 1: Compile your implementation of the Expression Tree ADT in the file

TestExprTree.java.

Step 2: Run the Java bytecode files produced by Step 1.

Step 3: Complete the following test plan by filling in the expected result for each arithmetic

expression. You may wish to add arithmetic expressions to the test plan.

LABORATORY 11

260

Step 4: Execute this test plan. If you discover mistakes in your implementation of the Expres-

sion Tree ADT, correct them and execute the test plan again.

Test case
Arithmetic
expression Expected result Checked

One operator +34

Nested operators *+34/52

All operators at start -/*9321

Uneven nesting *4+6-75

Zero dividend /02

Single-digit number 7

Test Plan for the Operations in the Expression Tree ADT

LABORATORY 11

261

LABORATORY 11: In-lab Exercise 1

Name

Hour/Period/Section

Date

In Laboratory 5 you created a copy constructor and a clone method for a linked-list data

structure. In this exercise, you create a copy constructor and a clone method for your linked

tree implementation of the Expression Tree ADT.

ExprTree (ExprTree valueTree)

Precondition:

None.
Postcondition:

Copy constructor. Creates an exact but separate copy of valueTree.

Object clone()

Precondition:

None.
Postcondition:

Returns an exact but separate copy of type Object.

Remember that to implement the clone method for any class you need to do the following:

a. Modify the class head by adding the words “implements Cloneable” to the end of the

class head.

b. Use super.clone to make a copy. An implementation of a clone method that was used

for the LStack class in Laboratory 5 can be found in the file clone.txt in the Lab5

package/subdirectory.

Remember that if you wish to clone an object that includes object references as part of its

instance data, you may have to do more work in clone than just calling super.clone(). In such

cases, you may want to consider using the copy constructor or study the use of clone in more

detail than is presented here.

LABORATORY 11

262

Step 1: Implement these methods and add them to the file ExprTree.java. An incomplete def-

inition for these operations is included in the definition of the ExprTree class in the file

ExprTree.jshl.

Step 2: Activate the test for the copy constructor and clone in the test program in the file

TestExprTree.java by removing the comment delimiter (and the character ‘1’) from the lines

that begin with “//1”. If you prefer, you may rename the file TestExprTree2.java, but remember

you need to do more than just change the filename.

Step 3: Prepare a test plan for this operation that includes a variety of expression trees,

including empty trees and trees containing a single element. A test plan form follows.

LABORATORY 11

263

Step 4: Execute your test plan. If you discover mistakes in your implementation of the copy

constructor or clone method, correct them and execute the test plan again.

Test case
Arithmetic
expression Expected result Checked

Test Plan for the Copy Constructor and clone Operation

LABORATORY 11

264

LABORATORY 11: In-lab Exercise 2

Name

Hour/Period/Section

Date

Commuting the operators in an arithmetic expression requires restructuring the nodes in the

corresponding expression tree. For example, commuting every operator in the expression tree

yields the expression tree

An operation for commuting expression trees is described below.

void commute ()

Precondition:

None.
Postcondition:

Commutes the operands for every arithmetic operator in an expression tree.

*

+

31

–

46

*

–

64

+

13

LABORATORY 11

265

Step 1: Implement this method and add it to the file ExprTree.java. An incomplete definition

for this operation is included in the definition of the ExprTree class in the file ExprTree.jshl.

Step 2: Activate the test for the commute operation in the test program in the file

TestExprTree.java by removing the comment delimiter (and the character ‘2’) from the lines

that begin with “//2”. If you prefer, you may rename the file TestExprTree3.java, but remember

you need to do more than just change the filename.

Step 3: Prepare a test plan for this operation that includes a variety of arithmetic expressions.

A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

commute operation, correct them and execute the test plan again.

Test case
Arithmetic
Expression Expected result Checked

Test Plan for the commute Operation

TEAMFL
Y

Team-Fly®

LABORATORY 11

266

LABORATORY 11: In-lab Exercise 3

Name

Hour/Period/Section

Date

Computers are composed of logic circuits that take a set of boolean input values and produce a

boolean output. You can represent this mapping from inputs to output with a logic expression

consisting of the boolean logic operators AND, OR, and NOT (defined below) and the boolean

values true and false.

Just as you can construct an arithmetic expression tree from an arithmetic expression, you can

construct a logic expression tree from a logic expression. For example, the following logic

expression

(1*0)+(1*-0)

can be expressed in prefix form as

+*10*1-0

Applying the expression tree construction process described in the Overview to this expression

produces the following logic expression tree.

(NOT) (AND) (OR)

A �A A B A*B A+B

0 1 0 0 0 0

1 0 0 1 0 1

1 0 0 1

1 1 1 1

0

+

*

01

*

–1

LABORATORY 11

267

Evaluating this tree yields the boolean value true.

Construction of this tree requires processing a unary operator, the boolean operator NOT (‘-’).

When building a logic expression tree, you should set the right child of any node containing the

NOT operator to point to the operand and set the left child to null. Note that you must be

careful when performing the remaining operations to avoid traversing these null left children.

Step 1: Modify the evaluate() method in the file ExprTree.java so that this method yields an

integer value rather than a floating-point number. You may need to modify a related recursive

private method as well. Also rename the class (from class ExprTree to class LogiTree) and corre-

spondingly rename the constructor (from ExprTree to LogiTree). Save the resulting class defini-

tions in the file LogiTree.java.

Step 2: Further modify various methods in your file LogiTree.java to create an implementa-

tion of the Expression Tree ADT that supports logic expressions consisting of the boolean values

True and False (‘1’ and ‘0’) and the boolean operators AND, OR, and NOT (‘*’, ‘+’, and ‘–’). Be

aware that in Java boolean values are not equivalent to ‘1’ or ‘0’. In Java the values of true and

false cannot be cast into any numerical representation.

Step 3: Modify the test program in the file TestExprTree.java so that your implementation of

the Logic Expression Tree ADT in the file LogiTree.java is used in place of your (arithmetic)

Expression Tree ADT. Rename the class TestExprTree as TestLogiTree and then save the file as

TestLogiTree.java. Last, modify the code of TestLogiTree.java to instantiate LogiTree objects

instead of ExprTree objects.

Step 4: Compile and run your implementation of the Logic Expression Tree ADT and the

modified test program.

Step 5: Complete the following test plan by filling in the expected result for each logic expres-

sion. You may wish to include additional logic expressions in this test plan.

LABORATORY 11

268

Step 6: Execute this test plan. If you discover mistakes in your implementation of the Logic

Expression Tree ADT, correct them and execute the test plan again.

Test case
Arithmetic
expression Expected result Checked

One operator +10

Nested operators *+10+01

NOT (Boolean value) +*10*1-0

NOT (subexpression) +-1-*11

NOT (nested expression) -*+110

Double negation --1

Boolean value 1

Test Plan for the Operations in the Logic Expression
Tree ADT

LABORATORY 11

269

Having produced a tool that constructs and evaluates logic expression trees, you can use this

tool to investigate the use of logic circuits to perform binary arithmetic. Suppose you have two

one-bit binary numbers (X and Y). You can add these numbers together to produce a one-bit

sum (S) and a one-bit carry (C). The results of one-bit binary addition for all combinations of X

and Y are tabulated below.

A brief analysis of this table reveals that you can compute the values of outputs S and C from

inputs X and Y using the following pair of (prefix) logic expressions.

C = *XY S = +*X–Y*–XY

Step 7: Using your implementation of the Logic Expression Tree ADT and the modified test

program, confirm that these expressions are correct by completing the following table.

X Y C = *XY S = +*X–Y*–XY

0 0 *00 = +*0–0*–00 =

0 1 *01 = +*0–1*–01 =

1 0 *10 = +*1–0*–10 =

1 1 *11 = +*1–1*–11 =

X Y C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

X

+Y

CS

LABORATORY 11

271

LABORATORY 11: Postlab Exercise 1

Name

Hour/Period/Section

Date

What type of tree traversal (inorder, preorder, or postorder) serves as the basis of your imple-

mentation of each of the following Expression Tree ADT operations? Briefly explain why you

used a given traversal to implement a particular operation.

build

Traversal:

Explanation:

expression

Traversal:

Explanation:

LABORATORY 11

272

evaluate

Traversal:

Explanation:

clear

Traversal:

Explanation:

LABORATORY 11

273

LABORATORY 11: Postlab Exercise 2

Name

Hour/Period/Section

Date

Consider the methods writeSub1() and writeSub2() given below.

void writeSub1 (TreeNode p)
{
 if (p != null)
 {
 writeSub1(p.getLeft());
 System.out.print(p.getElement());
 writeSub1(p.getRight());
 }
}

void writeSub2 (TreeNode p)
{
 if (p.getLeft() != null) writeSub2(p.getLeft());
 System.out.print(p.getElement());
 if (p.getRight != null) writeSub2(p.getRight());
}

Let root be the reference to the root node of a nonempty expression tree. Will the following pair

of method calls produce the same output?

writeSub1(root); and writeSub2(root);

If not, why not? If so, how do the methods differ and why might this difference be important?

275

LABORATORY 1212

Binary Search

Tree ADT

OBJECTIVES

In this laboratory you

• create an implementation of the Binary Search Tree ADT using a linked tree structure.

• create operations that compute the height of a tree and output the elements in a tree whose

keys are less than a specified key.

• examine how an index can be used to retrieve records from a database file and construct an

indexing program for an accounts database.

• analyze the efficiency of your implementation of the Binary Search Tree ADT.

OVERVIEW

In Laboratory 11, you saw how the evaluation of an arithmetic expression can be represented

using a hierarchical data structure. In this laboratory, you examine how a binary tree can be

used to represent the hierarchical search process embodied in the binary search algorithm.

The binary search algorithm allows you to efficiently locate an element in an array provided

that each array element has a unique identifier—called its key—and provided that the array

elements are stored in order based on their keys. Given the following array of keys:

a binary search for the element with key 31 begins by comparing 31 with the key in the middle

of the array, 43. Because 31 is less than 43, the element with key 31 must lie in the lower half of

the array (entries 0–2). The key in the middle of this subarray is 20. Because 31 is greater than

20, the element with key 31 must lie in the upper half of this subarray (entry 2). This array

entry contains the key 31. Thus, the search terminates with success.

Although the comparisons made during a search for a given key depend on the key, the relative

order in which comparisons are made is invariant for a given array of elements. For instance,

when searching through the previous array, you always compare the key that you are searching

for with 43 before you compare it with either 20 or 72. Similarly, you always compare the key

Index 0 1 2 3 4 5 6

Key 16 20 31 43 65 72 86

TEAMFL
Y

Team-Fly®

LABORATORY 12

276

with 72 before you compare it with either 65 or 86. The order of comparisons associated with

this array is shown below.

The hierarchical nature of the comparisons that are performed by the binary search algorithm

is reflected in the following tree.

Observe that for each key K in this tree, all of the keys in K’s left subtree are less than K and all of

the keys in K’s right subtree are greater than K (or equal to it—if all the keys are not unique).

Trees with this property are referred to as binary search trees.

When searching for a key in a binary search tree, you begin at the root node and move

downward along a branch until either you find the node containing the key or you reach a leaf

node without finding the key. Each move along a branch corresponds to an array subdivision in

the binary search algorithm. At each node, you move down to the left if the key you are

searching for is less than the key stored in the node, or you move down to the right if the key

you are searching for is greater than the key stored in the node.

Binary Search Tree ADT

Elements

The elements in a binary search tree are of generic type TreeElem. Each element has a key that

uniquely identifies the element. Elements usually include additional data. Objects of type

TreeElem must provide a method called key() that returns an element’s key. To ensure that

TreeElem provides the method key(), it has been defined as an interface in the file

TreeElem.java. The element’s key must support the six basic relational operators.

Index 0 1 2 3 4 5 6

Key 16 20 31 43 65 72 86

Order compared 3 2 3 1 3 2 3

43

20

3116

72

8665

1

2

3

Order

Compared

LABORATORY 12

277

Structure

The elements form a binary tree. For each element E in the tree, all the elements in E’s left

subtree have keys that are less than E’s key and all the elements in E’s right subtree have keys

that are greater than E’s key.

Constructor and Methods

BSTree ()

Precondition:

None.
Postcondition:

Constructor. Creates an empty binary search tree.

void insert (TreeElem newElement)

Precondition:

Binary search tree is not full.
Postcondition:

Inserts newElement into a binary search tree. If an element with the same key as newEle-

ment already exists in the tree, then updates that element’s nonkey fields with newEle-

ment’s nonkey fields.

TreeElem retrieve (int searchKey)

Precondition:

None.
Postcondition:

Searches a binary search tree for the element with key searchKey. If this element is found,

then returns the element. Otherwise, returns a null element.

void remove (int deleteKey)

Precondition:

None.
Postcondition:

Deletes the element with key deleteKey from a binary search tree.

void writeKeys ()

Precondition:

None.
Postcondition:

Outputs the keys of the elements in a binary search tree. The keys are output in ascending

order, one per line.

LABORATORY 12

278

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in a binary search tree.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a binary search tree is empty. Otherwise, returns false.

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a binary search tree is full. Otherwise, returns false.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the keys in a binary search tree. The tree is output with its branches oriented from

left (root) to right (leaves)—that is, the tree is output rotated counterclockwise 90 degrees

from its conventional orientation. If the tree is empty, outputs “Empty tree”. Note that this

operation is intended for testing/debugging purposes only.

LABORATORY 12

279

LABORATORY 12: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 12

281

Laboratory 12: Prelab Exercise

Name

Hour/Period/Section

Date

Step 1: Implement the operations in Binary Search Tree ADT (in this case, a tree in which all

the keys are unique) using a linked tree structure. As with the linear linked structures you

developed in prior laboratories, your implementation of the linked tree structure uses a pair of

classes: one for the nodes in the tree (BSTreeNode) and one for the overall tree structure

(BSTree). Each node in the tree should contain an element (element) and a pair of pointers to

the node’s children (left and right). Your implementation should also maintain a pointer to the

tree’s root node (root).

The interface TreeNode is in the file TreeNode.java. This TreeNode interface is very similar to

the one used for the Expression Tree ADT in the previous laboratory. The only difference is that

the TreeNode in this laboratory stores (the more generic) elements of type Object instead of the

elements of type char that were used in the Expression Tree ADT. This demonstrates that for

the most part, the TreeNode interface represents what methods we expect a node in a binary

tree to provide, but not how those methods are implemented by the class that uses (imple-

ments) the interface. This is the premise behind any interface that a Java programmer creates.

Remember that although there are no access designations in the TreeNode interface file, in Java

all methods that implement an interface must be declared public.

Base your implementation on the following incomplete definitions from the files

BSTreeNode.jshl and BSTree.jshl. You are to fill in the Java code for each of the constructors

and methods where the implementation braces are empty, or where an entire method or set of

methods from the interface need to be inserted (noted by “insert method … here”). Save your

implementation in the files BSTreeNode.java and BSTree.java, respectively.

class BSTreeNode implements TreeNode
// Facilitator class for the BSTree class
{
 // Data members
 private TreeElem element; // Binary search tree element
 private TreeNode left, // Reference to the left child
 right; // Reference to the right child

 // Constructor
 public BSTreeNode (TreeElem elem, TreeNode leftPtr,
 TreeNode rightPtr)
 { }

LABORATORY 12

282

 // Class Methods used by client class
 // --- Insert method implementations for the interface TreeNode here --- //

} // class BSTreeNode

class BSTree
{
 // Data member
 private TreeNode root; // Reference to the root node

 // Constructor
 public BSTree ()
 { }

 // Binary search tree manipulation methods
 public void insert (TreeElem newElement) // Insert element
 { }
 public TreeElem retrieve (int searchKey) // Retrieve element
 { }
 public void remove (int deleteKey) // Remove element
 { }
 public void writeKeys () // Output keys
 { }
 public void clear () // Clear tree
 { }

 // Binary search tree status methods
 public boolean isEmpty () // Is tree empty?
 { }
 public boolean isFull () // Is Tree full?
 { }

 // Output the tree structure — used in testing/debugging
 public void showStructure ()
 { }

 // Recursive partners of the public member methods
 // ----- Insert these methods here.
 private void showSub (TreeNode p, int level)
 { }

} // class BSTree

Step 2: The definition of the BSTree class in the file BSTree.jshl does not include the recursive

partners of the public methods needed by your implementation of the Binary Search Tree ADT.

These recursive partners will be private methods of the BSTree class. Add these recursive meth-

ods to the file BSTree.java.

Step 3: Save your implementation of all the methods of the Binary Search Tree ADT in the file

BSTree.java. Be sure to document your code.

LABORATORY 12

283

Laboratory 12: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program in the file TestBSTree.java allows you to interactively test your implemen-

tation of the Binary Search Tree ADT using the following commands. If you have limited

knowledge of reading input from the keyboard in Java, carefully review the TestBSTree.java file

(and some of the other Java program files provided with this laboratory) and notice the steps

that are taken to read in more than one character at a time.

Step 1: Prepare a test plan for your implementation of the Binary Search Tree ADT. Your test

plan should cover trees of various shapes and sizes, including empty, single-branch, and single-

element trees. A test plan form follows.

Command Action

+key Insert (or update) the element with the specified key.

?key Retrieve the element with the specified key and output it.

-key Delete the element with the specified key.

K Output the keys in ascending order.

E Report whether the tree is empty.

F Report whether the tree is full.

C Clear the tree.

Q Quit the test program.

LABORATORY 12

284

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them

and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the Operations in the Binary Search Tree
ADT

LABORATORY 12

285

Laboratory 12: In-lab Exercise 1

Name

Hour/Period/Section

Date

Binary search trees containing the same elements can vary widely in shape depending on the

order in which the elements were inserted into the trees. One measurement of a tree’s shape is

its height—that is, the number of nodes on the longest path from the root node to any leaf node.

This statistic is significant because the amount of time that it can take to search for an element

in a binary search tree is a function of the height of the tree.

int height ()

Precondition:

None.
Postcondition:

Returns the height of a binary search tree.

You can compute the height of a binary search tree using a postorder traversal and the following

recursive definition of height.

Step 1: Implement this operation and add it to the file BSTree.java. A partial definition for

this operation for the BSTree class is included in the file BSTree.jshl.

Step 2: Activate the ‘H’ (height) command in the test program in the file TestBSTree.java by

removing the comment delimiter (and the character ‘H’) from the lines that begin with “//H”.

Step 3: Prepare a test plan for this operation that covers trees of various shapes and sizes,

including empty and single-branch trees. A test plan form follows.

height p() 0 if p null (base case)=

max height p.getLeft()() height p.getRight()() 1+,() if p null≠ (recursive step)

=

TEAMFL
Y

Team-Fly®

LABORATORY 12

286

Step 4: Execute your test plan. If you discover mistakes in your implementation of the height

operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the height Operation

LABORATORY 12

287

Laboratory 12: In-lab Exercise 2

Name

Hour/Period/Section

Date

You have created operations that retrieve a single element from a binary search tree and output

all the keys in a tree. The following operation outputs only those keys that are less than a spec-

ified key.

void writeLessThan (int searchKey)

Precondition:

None.
Postcondition:

Outputs the keys in a binary search tree that are less than searchKey. The keys are output

in ascending order. Note that searchKey need not be a key in the tree.

You could implement this operation using an inorder traversal of the entire tree in which you

compare each key with searchKey and output those that are less than searchKey. Although suc-

cessful, this approach is inefficient. It searches subtrees that you know cannot possibly contain

keys that are less than searchKey.

Suppose you are given a searchKey value of 37 and the following binary search tree.

Because the root node contains the key 43, you can determine immediately that you do not

need to search the root node’s right subtree for keys that are less than 37. Similarly, if the value

of searchKey were 67, then you would need to search the root node’s right subtree but would

not need to search the right subtree of the node whose key is 72. Your implementation of the

writeLessThan operation should use this idea to limit the portion of the tree that must be

searched.

43

20

3116

72

8665

LABORATORY 12

288

Step 1: Implement this operation and add it to the file BSTree.java. A partial implementation

for this operation is included in the definition of the BSTree class in the file BSTree.jshl.

Step 2: Activate the ‘<’ (less than) command in the test program in the file TestBSTree.java by

removing the comment delimiter (and the character ‘<’) from the lines that begin with “//<”.

Step 3: Prepare a test plan for this operation that includes a variety of trees and values for

searchKey, including values of searchKey that do not occur in a particular tree. Be sure to

include test cases that limit searches to the left subtree of the root node, the left subtree and

part of the right subtree of the root node, the leftmost branch in the tree, and the entire tree. A

test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

writeLessThan operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the writeLessThan Operation

LABORATORY 12

289

Laboratory 12: In-lab Exercise 3

Name

Hour/Period/Section

Date

A database is a collection of related pieces of information that is organized for easy retrieval.

The set of account records shown below, for instance, forms an accounts database.

Each record in the accounts database is assigned a record number based on that record’s rel-

ative position within the database file. You can use a record number to retrieve an account

record directly, much as you can use an array index to reference an array element directly. The

following program from the file AccountRec.java, for example, retrieves a record from the

accounts database in the file Accounts.dat. Notice that both keyboard and file input are used in

this program.

import java.io.*;
import java.util.StringTokenizer;

class AccountRec
{
 // Constants
 private static final long bytesPerRecord = 38; // Number of bytes used to store

// each record in the accounts
// database file

 // Data members
 private int acctID; // Account identifier
 private String firstName; // Name of account holder
 private String lastName;
 private double balance; // Account balance

Record No. Account ID First name Last name Balance

0 6274 James Johnson 415.56

1 2843 Marcus Wilson 9217.23

2 4892 Maureen Albright 51462.56

3 8337 Debra Douglas 27.26

4 9523 Bruce Gold 719.32

5 3165 John Carlson 1496.24

LABORATORY 12

290

 public static void main (String args[]) throws IOException
 {
 AccountRec acctRec = new AccountRec(); // Account record
 long recNum; // User input record number
 String str, // For reading a String
 name;

 // Need random access on the accounts database file; r = read only
 RandomAccessFile inFile =
 new RandomAccessFile("Accounts.dat", "r");

 // Also need tokenized input stream from keyboard
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));
 StreamTokenizer keybdTokens = new StreamTokenizer(reader);

 // Get the record number to retrieve.
 System.out.println();
 System.out.print("Enter record number: ");
 keybdTokens.nextToken();
 recNum = (long)keybdTokens.nval;

 // Move to the corresponding record in the database file using the
 // seek() method in RandomAccessFile.
 inFile.seek(recNum * bytesPerRecord);

 str = inFile.readLine(); // Read the record

 if (str != null) // Is there something in the
 // string?
 {
 // Need to tokenize the String read by readline()
 StringTokenizer strTokens = new StringTokenizer(str);

 name = strTokens.nextToken(); // first String token
 acctRec.acctID = Integer.parseInt(name); // Convert String to an int
 acctRec.firstName = strTokens.nextToken(); // 2nd String token -
 // firstName
 acctRec.lastName = strTokens.nextToken(); // 3rd String token -
 // lastName
 name = strTokens.nextToken(); // 4th String token
 // Convert the String to a double
 acctRec.balance = Double.parseDouble(name);

 // Display the record.
 System.out.println(recNum + " : " + acctRec.acctID + " "
 + acctRec.firstName + " " + acctRec.lastName + " "
 + acctRec.balance);
 }
 else
 System.out.println("Reached EOF");

 // Close the file streams
 inFile.close();
 } // main

} // class AccountRec

LABORATORY 12

291

Record numbers are assigned by the database file mechanism and are not part of the account

information. As a result, they are not meaningful to database users. These users require a dif-

ferent record retrieval mechanism, one that is based on an account ID (the key for the

database) rather than a record number.

Retrievals based on account ID require an index that associates each account ID with the corre-

sponding record number. You can implement this index using a binary search tree in which

each element contains the two fields: an account ID (the key) and a record number. Since the

binary search tree stores elements of type TreeElem, the class IndexEntry given below can be

used to implement this index.

class IndexEntry implements TreeElem
{
 int acctID; // (Key) Account identifier
 long recNum; // Record number

 public int key ()
 { return acctID; } // Return key field
}

You build the index by reading through the database account by account, inserting successive

(account ID, record number) pairs into the tree as you progress through the file. The following

index tree, for instance, was produced by inserting the account IndexEntry elements from the

database records shown above into an (initially) empty tree.

Given an account ID, retrieval of the corresponding account record is a two-step process. First,

you retrieve the element from the index tree that has the specified account ID. Then, using the

record number stored in the index element, you read the corresponding account record from

the database file. The result is an efficient retrieval process that is based on account ID.

Step 1: Using the program shell given in the file IndexDB.jshl as a basis, create a program that

builds an index tree for the accounts database in the file Accounts.dat. Once the index is built,

your program should

• output the account IDs in ascending order.

• read an account ID from the keyboard and output the corresponding account record.

6274
0

2843
1

4892
2

1892
4

8337
3

9523
5

LABORATORY 12

292

Step 2: Test your program using the accounts database in the text file Accounts.dat. A copy of

this database in given below. Try to retrieve several account IDs, including account IDs that do

not occur in the database. A test plan form follows.

Record No. Account ID First name Last name Balance

0 6274 James Johnson 415.56

1 2843 Marcus Wilson 9217.23

2 4892 Maureen Albright 51462.56

3 8337 Debra Douglas 27.26

4 9523 Bruce Gold 719.32

5 3165 John Carlson 1496.24

6 1892 Mary Smith 918.26

7 3924 Simon Chang 386.85

8 6023 John Edgar 9.65

9 5290 George Truman 16110.68

10 8529 Elena Gomez 86.77

11 1144 Donald Williams 4114.26

LABORATORY 12

293

Test case Expected result Checked

Test Plan for the Indexed Accounts Database Program

LABORATORY 12

295

Laboratory 12: Postlab Exercise 1

Name

Hour/Period/Section

Date

What are the heights of the shortest and tallest binary search trees that can be constructed from

a set of N distinct keys? Give examples that illustrate your answer.

TEAMFL
Y

Team-Fly®

LABORATORY 12

296

Laboratory 12: Postlab Exercise 2

Name

Hour/Period/Section

Date

Given the shortest possible binary search tree containing N distinct keys, develop worst-case,

order-of-magnitude estimates of the execution time of the following Binary Search Tree ADT

operations. Briefly explain your reasoning behind each of your estimates.

retrieve O()

Explanation:

insert O()

Explanation:

LABORATORY 12

297

remove O()

Explanation:

writeKeys O()

Explanation:

299

LABORATORY 1313

Heap ADT

OBJECTIVES

In this laboratory you

• create an implementation of the Heap ADT using an array representation of a tree.

• create a heap sort method based on the heap construction techniques used in your imple-

mentation of the Heap ADT.

• use inheritance to derive a priority queue class from your heap class and develop a simulation

of an operating system’s task scheduler using a priority queue.

• analyze where elements with various priorities are located in a heap.

OVERVIEW

Linked structures are not the only way in which you can represent trees. If you take the binary

tree shown below and copy its contents into an array in level order, you produce the following

array.

Examining the relationship between positions in the tree and entries in the array, you see that if

an element is stored in entry N in the array, then the element’s left child is stored in entry

2N + 1, its right child is stored in entry 2N + 2, and its parent is stored in entry (N � 1) / 2.

These mappings make it easy to move through the tree stepping from parent to child (or vice

versa).

93

82

7527

64

1839

Index Entry

0 93
1 82
2 64
3 27
4 75
5 39
6 18

LABORATORY 13

300

You could use these mappings to support an array-based implementation of the Binary Search

Tree ADT. However, the result would be a tree representation in which large areas of the array

are left unused (as indicated by the dashes in the following array).

In this laboratory, you focus on a different type of tree called a heap. A heap is a binary tree that

meets the following conditions.

• The tree is complete. That is, every level in the tree is filled, except possibly the bottom level.

If the bottom level is not filled, then all the missing elements occur on the right.

• Each element in the tree has a corresponding value. For each element E, all of E’s descen-

dants have values that are less than or equal to E’s value. Therefore, the root stores the maxi-

mum of all values in the tree. (Note: In this laboratory we are using a max-heap. There is

another heap variant called a min-heap. In a min-heap, all of E’s descendants have values that

are greater than or equal to E’s value.)

The tree shown at the beginning of this laboratory is a heap, as is the tree shown below.

The fact that the tree is complete means that a heap can be stored in level order in an array

without introducing gaps (unused areas) in the middle. The result is a compact representation

in which you can easily move up and down the branches in a heap.

92

43

20

3116

72

8665

Index Entry

0 43
1 20
2 72
3 16
4 31
5 65
6 86
7 —
8 —
� �

13 —
14 92

72

72

6626

34

9

LABORATORY 13

301

Clearly, the relationship between the priorities (or values) of the various elements in a heap is

not strong enough to support an efficient search process. Because the relationship is simple,

however, you can quickly restructure a heap after removing the highest priority (root) element

or after inserting a new element. As a result, you can rapidly process the elements in a heap in

descending order based on priority. This property combined with the compact array represen-

tation forms the basis for an efficient sorting algorithm called heap sort (In-lab Exercise 2) and

makes a heap an ideal representation for a priority queue (In-lab Exercise 3).

Heap ADT

Elements

The elements in a heap are of generic type HeapData defined in the file HeapData.java. Each

element has a priority that is used to determine the relative position of the element within the

heap. Elements usually include additional data. Note that priorities are not unique—it is quite

likely that several elements have the same priority. These objects must support the six basic

relational operators, as well as a method called pty() that returns an element’s priority.

Structure

The elements form a complete binary tree. This is a max-heap. For each element E in the tree,

all of E’s descendants have priorities that are less than or equal to E’s priority.

Constructors and Methods

Heap ()

Precondition:

None.
Postcondition:

Default Constructor. Calls setup, which creates an empty heap. Allocates enough memory

for a heap containing DEF_MAX_HEAP_SIZE (a constant value) elements.

Heap (int maxNumber)

Precondition:

maxNumber > 0.
Postcondition:

Constructor. Calls setup, which creates an empty heap. Allocates enough memory for a heap

containing maxNumber elements.

LABORATORY 13

302

void setup (int maxNumber)

Precondition:

maxNumber > 0. A helper method for the constructors. Is declared private since only heap

constructors should call this method.
Postcondition:

Creates an empty heap. Allocates enough memory for a heap containing maxNumber ele-

ments.

void insert (HeapData newElement)

Precondition:

Heap is not full.
Postcondition:

Inserts newElement into a heap. Inserts this element as the bottom rightmost element in

the heap and moves it upward until the properties that define a heap are restored. Note that

repeatedly swapping array elements is not an efficient way of positioning the newElement in

the heap.

HeapData removeMax ()

Precondition:

Heap is not empty.
Postcondition:

Removes the element with the highest priority (the root) from a heap and returns it.

Replaces the root element with the bottom rightmost element and moves this element

downward until the properties that define a heap are restored. Note that (as in insert above)

repeatedly swapping array elements is not an efficient method for restoring the heap.

void clear ()

Precondition:

None.
Postcondition:

Removes all the elements in a heap.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a heap is empty. Otherwise, returns false.

LABORATORY 13

303

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a heap is full. Otherwise, returns false.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs the priorities of the elements in a heap in both array and tree form. The tree is out-

put with its branches oriented from left (root) to right (leaves)—that is, the tree is output

rotated counterclockwise 90 degrees from its conventional orientation. If the heap is empty,

outputs “Empty heap”. Note that this operation is intended for testing/debugging purposes

only.

LABORATORY 13

305

LABORATORY 13: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total TEAMFL
Y

Team-Fly®

LABORATORY 13

307

LABORATORY 13: Prelab Exercise

Name

Hour/Period/Section

Date

Step 1: Implement the operations in Heap ADT using an array representation of a heap. Heaps

can be different sizes; therefore you need to store the actual number of elements in the heap

(size), along with the heap elements themselves (element). Remember that in Java the size of

the array is held in a constant called length in the array object. Therefore, in Java a separate

variable (such as maxSize) is not necessary, since the maximum number of elements our heap

can hold can be determined by referencing length — more specifically in our case,

element.length.

Base your implementation on the following incomplete definitions from the file Heap.jshl. You

are to fill in the Java code for each of the constructors and methods where only the method

headers are given. Each method header appears on a line by itself and does not contain a semi-

colon. This is not an interface file, so a semicolon should not appear at the end of a method

header. Each of these methods needs to be fully implemented by writing the body of code for

implementing that particular method and enclosing the body of that method in braces.

public class Heap
{
 // Constant
 private static final int DEF_MAX_HEAP_SIZE = 10; // Default maximum heap size

 // Data members
 private int size; // Actual number of elements in the heap
 private HeapData [] element; // Array containing the heap elements

 // ———The following are Method Headers ONLY ——— //
 // each of these methods needs to be fully implemented

 // Constructors and helper method setup
 public Heap () // Constructor: default size
 public Heap (int maxNumber) // Constructor: specific size

 // Class methods
 private void setup (int maxNumber) // Called by constructors only

 // Heap manipulation methods
 public void insert (HeapData newElement) // Insert element
 public HeapData removeMax () // Remove max pty element
 public void clear () // Clear heap

LABORATORY 13

308

 // Heap status methods
 public boolean isEmpty () // Heap is empty
 public boolean isFull () // Heap is full

 // Output the heap structure — used in testing/debugging
 public void showStructure ()

 // Recursive partner of the showStructure() method
 private void showSubtree (int index, int level)

} // class Heap

Step 2: Save your implementation of the Heap ADT in the file Heap.java. Be sure to docu-

ment your code.

LABORATORY 13

309

LABORATORY 13: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program in the file TestHeap.java allows you to interactively test your implementation

of the Heap ADT using the following commands. If you have limited knowledge of reading input

from the keyboard in Java, carefully review the TestHeap.java file (and the other test files pro-

vided with this laboratory) and notice the steps that are taken to read in more than one char-

acter at a time.

Step 1: Prepare a test plan for your implementation of the Heap ADT. Your test plan should

cover heaps of various sizes, including empty, full, and single-element heaps. A test plan form

follows.

Command Action

+pty Insert an element with the specified priority.

- Remove the element with the highest priority from the heap and output it.

E Report whether the heap is empty.

F Report whether the heap is full.

C Clear the heap.

Q Quit the test program.

LABORATORY 13

310

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them

and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the Operations in the Heap ADT

LABORATORY 13

311

LABORATORY 13: In-lab Exercise 1

Name

Hour/Period/Section

Date

Examining the tree form of a heap rotated 90 degrees counterclockwise from its conventional

orientation can be awkward. Because a heap is a complete tree, an unambiguous representation

in tree form can be generated by outputting the heap level-by-level, with each level output on a

separate line.

void writeLevels ()

Precondition:

None.
Postcondition:

Outputs the elements in a heap in level order, one level per line. Only outputs each ele-

ment’s priority. If the heap is empty, then outputs “Empty heap”.

The tree shown on the first page of this laboratory, for example, yields the following output.

93
82 64
27 75 39 18

Step 1: Implement this operation and add it to the file Heap.java. An incomplete implementa-

tion of this method is included in the definition of the Heap class in the file Heap.jshl.

Step 2: Activate the ‘W’ (write levels) command in the test program in the file TestHeap.java

by removing the comment delimiter (and the character ‘W’) from the lines that begin with “//W”.

Step 3: Prepare a test plan for this operation that covers heaps of various sizes, including

empty and single-element heaps. A test plan form follows.

LABORATORY 13

312

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

writeLevels operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the writeLevels Operation

LABORATORY 13

313

LABORATORY 13: In-lab Exercise 2

Name

Hour/Period/Section

Date

After removing the root element, the removeMax operation inserts a new element at the root and

moves this element downward until a heap is produced. The following method performs a

similar task, except that the heap it is building is rooted at array entry root and occupies only a

portion of the array.

void moveDown (HeapData [] element, int root, int size)

Precondition:

The left and right subtrees of the binary tree rooted at root are heaps.
Postcondition:

Restores the binary tree rooted at root to a heap by moving element[root] downward until

the tree satisfies the heap property. Parameter size is the number of elements in the array.

Remember that repeatedly swapping array elements is not an efficient method for restoring

the heap.

In this exercise, you implement an efficient sorting algorithm called heap sort using the

moveDown() method. You first use this method to transform an array into a heap. You then

remove elements one-by-one from the heap (from the highest priority element to the lowest)

until you produce a sorted array.

Let’s begin by examining how you transform an unsorted array into a heap. Each leaf of any

binary tree is a one-element heap. You can build a heap containing three elements from a pair

LABORATORY 13

314

of sibling leaves by applying the moveDown() method to that pair’s parent. The four single-

element heaps (leaf nodes) in the following tree

are transformed by the calls moveDown(sample, 1, 7) and moveDown(sample, 2, 7) into a pair of

three-element heaps:

By repeating this process, you build larger and larger heaps, until you transform the entire tree

(array) into a heap.

// Build successively larger heaps within the array until the
// entire array is a heap.

for (j = (size - 1) / 2; j >= 0; j--)
 moveDown(element, j, size);

75

27

8293

39

1864

Index Entry

0 75
1 27
2 39
3 93
4 82
5 64
6 18

75

93

8227

64

1839

Index Entry

0 75
1 93
2 64
3 27
4 82
5 39
6 18

LABORATORY 13

315

Combining the pair of three-element heaps shown previously using the call

moveDown(sample, 0, 7), for instance, produces the following heap.

Now that you have a heap, you remove elements of decreasing priority from the heap and grad-

ually construct an array that is sorted in ascending order. The root of the heap contains the

highest priority element. If you swap the root with the element at the end of the array and use

moveDown() to form a new heap, you end up with a heap containing six elements and a sorted

array containing one element. Performing this process a second time yields a heap containing

five elements and a sorted array containing two elements.

You repeat this process until the heap is gone and a sorted array remains.

// Swap the root element from each successively smaller heap with
// the last unsorted element in the array. Restore the heap after
// each exchange.

for (j = size - 1; j > 0; j--)
{
 temp = element[j];
 element[j] = element[0];
 element[0] = temp;
 moveDown(element, 0, j);
}

93

82

7527

64

1839

Index Entry

0 93
1 82
2 64
3 27
4 75
5 39
6 18

75

39

1827

64

Index Entry

0 75
1 39
2 64
3 27
4 18

5 82
6 93

Heap

Sorted
array

TEAMFL
Y

Team-Fly®

LABORATORY 13

316

A shell containing a heapSort() method comprised of the two loops shown above is given in the

file TestHeapSort.jshl.

Step 1: Using your implementation of the removeMax operation as a basis, create an implemen-

tation of the moveDown() method.

Step 2: Add your implementation of the movedown() method to the shell in the file

TestHeapSort.jshl, thereby completing code needed by the heapSort() method. Save the result

in the file TestHeapSort.java.

Step 3: Before testing the resulting heapSort() method using the test program in the file

TestHeapSort.java, prepare a test plan for the heapSort() method that covers arrays of differ-

ent lengths containing a variety of priority values. Be sure to include arrays that have multiple

elements with the same priority. A test plan form follows.

LABORATORY 13

317

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

moveDown() and heapSort() methods, correct them and execute your test plan again.

Test case Array Expected result Checked

Test Plan for the heapSort() Method

LABORATORY 13

318

LABORATORY 13: In-lab Exercise 3

Name

Hour/Period/Section

Date

A priority queue is a linear data structure in which the elements are maintained in descending

order based on priority. You can only access the element at the front of the queue—that is, the

element with the highest priority—and examining this element entails removing (dequeuing) it

from the queue.

Priority Queue ADT

The Priority Queue ADT inherits most of its functionality from the Heap ADT. Therefore, the

Priority Queue ADT is a specialized version of the Heap ADT. Thus, Priority Queue is the sub-

class of Heap, and Heap is the superclass of Priority Queue.

Elements

The elements in a priority queue are of generic type HeapData found in the file HeapData.java.

Each element has a priority that is used to determine the relative position of the element within

the queue. Elements usually include additional data. These objects must support the six basic

relational operators, as well as a method called pty() that returns an element’s priority.

Structure

The queue elements are stored in descending order based on priority.

Constructors and Methods

PtyQueue ()

Precondition:

None.
Postcondition:

Default Constructor. Creates an empty priority queue by calling the default constructor of

its superclass. Allocates enough memory for a queue containing DEF_MAX_HEAP_SIZE (a

constant value in Heap) elements.

LABORATORY 13

319

PtyQueue (int size)

Precondition:

size > 0.
Postcondition:

Constructor. Creates an empty priority queue by calling the corresponding constructor in

its superclass. Allocates enough memory for a queue containing size elements.

void enqueue (HeapData newElement)

Precondition:

Queue is not full.
Postcondition:

Inserts newElement into a priority queue.

HeapData dequeue ()

Precondition:

Queue is not empty.
Postcondition:

Removes the highest priority (front) element from a priority queue and returns it.

Inherited from Heap

void clear ()

boolean isEmpty ()

boolean isFull ()

You can easily and efficiently implement a priority queue as a heap by using the Heap ADT

insert operation to enqueue elements and the removeMax operation to dequeue elements. The

following incomplete definitions derive a class called PtyQueue from the Heap class. In Java the

keyword extends is used to specify inheritance (class PtyQueue extends Heap means PtyQueue

inherits from Heap). Thus, PtyQueue is the subclass and Heap is the superclass. The subclass

inherits all of the public and protected instance variables and methods defined by the super-

class and adds its own, unique elements as needed.

class PtyQueue extends Heap
{

 // Constructor
 public PtyQueue () // Constructor: default size
 { }
 public PtyQueue (int size) // Constructor: specific size
 { }

LABORATORY 13

320

 // Queue manipulation methods
 public void enqueue (HeapData newElement) // Enqueue element
 { }
 public HeapData dequeue () // Dequeue element
 { }

} // class PtyQueue

Implementations of the Priority Queue ADT constructor, enqueue, and dequeue operations are

given in the file PtyQueue.java. These implementations are very short, reflecting the close rela-

tionship between the Heap ADT and the Priority Queue ADT. Note that you inherit the

remaining operations in the Priority Queue ADT from the Heap class. You may use the file

TestPtyQueue.java to test the Priority Queue implementation.

Operating systems commonly use priority queues to regulate access to system resources such

as printers, memory, disks, software, and so forth. Each time a task requests access to a system

resource, the task is placed on the priority queue associated with that resource. When the task

is dequeued, it is granted access to the resource—to print, store data, and so on.

Suppose you wish to model the flow of tasks through a priority queue having the following prop-

erties:

• One task is dequeued every minute (assuming that there is at least one task waiting to be

dequeued during that minute).

• From zero to two tasks are enqueued every minute, where there is a 50% chance that no tasks

are enqueued, a 25% percent chance that one task is enqueued, and a 25% chance that two

tasks are enqueued.

• Each task has a priority value of zero (low) or one (high), where there is an equal chance of a

task having either of these values.

You can simulate the flow of tasks through the queue during a time period n minutes long using

the following algorithm.

Initialize the queue to empty.

for (minute = 0 ; minute < n ; ++minute)

{

 If the queue is not empty, then remove the task at the front of the queue.

 Compute a random integer k between 0 and 3.

 If k is 1, then add one task to the queue. If k is 2, then add two tasks.

 Otherwise (if k is 0 or 3), do not add any tasks to the queue.

 Compute the priority of each task by generating a random value of 0 or 1
 (assuming here are only 2 priority levels).

}

These steps are similar to the ones used in the simulation program for the Queue ADT in Labo-

ratory 6. Therefore, it may help to review the file StoreSim.jshl in the Lab6 Java package/subdi-

rectory. Notice that in OsSim.jshl the number of priority levels and the length of the simulation

LABORATORY 13

321

are read in as tokens from the keyboard instead of as arguments entered at the command-line

prompt. Review the code in OsSim.jshl carefully so you become familiar with how a Java

program can be written to read tokens of data.

Step 1: Using the program shell given in the file OsSim.jshl as a basis, create a program that

uses the Priority Queue ADT to implement the task scheduler described above. Your program

should output the following information about each task as it is dequeued: the task’s priority,

when it was enqueued, and how long it waited in the queue.

Step 2: Use your program to simulate the flow of tasks through the priority queue and com-

plete the following table.

Step 3: Is your priority queue task scheduler unfair—that is, given two tasks T1 and T2 of the

same priority, where task T1 is enqueued at time N and task T2 is enqueued at time N + i (i > 0),

is task T2 ever dequeued before task T1? If so, how can you eliminate this problem and make

your task scheduler fair?

Time

(minutes)

Longest wait for any

low priority (0) task

Longest wait for any

high priority (1) task

10

30

60

LABORATORY 13

323

LABORATORY 13: Postlab Exercise 1

Name

Hour/Period/Section

Date

You can use a heap—or a priority queue (In-lab Exercise 3)—to implement both a first-in, first-

out (FIFO) queue and a last-in, first-out (LIFO) stack. The trick is to use the order in which ele-

ments arrive as the basis for determining the elements’ priority values.

Part A

How would you assign priority values to elements to produce a FIFO queue?

Part B

How would you assign priority values to elements to produce a LIFO stack?

LABORATORY 13

324

LABORATORY 13: Postlab Exercise 2

Name

Hour/Period/Section

Date

Part A

Given a heap containing ten elements with distinct priorities, where in the heap can the

element with the next-to-highest priority be located? Give examples to illustrate your answer.

Part B

Given the same heap as in Part A, where in the heap can the element with the lowest priority be

located? Give examples to illustrate your answer.

325

LABORATORY 1414

Weighted

Graph ADT

OBJECTIVES

In this laboratory you

• create an implementation of the Weighted Graph ADT using a vertex list and an adjacency

matrix.

• add vertex coloring and implement a method that checks whether a graph has a proper color-

ing.

• develop a routine that finds the least costly (or shortest) path between each pair of vertices in

a graph.

• investigate the Four-Color Theorem by generating a graph for which no proper coloring can

be created using less than five colors.

OVERVIEW

Many relationships cannot be expressed easily using either a linear or a hierarchical data

structure. The relationship between the cities connected by a highway network is one such

relationship. Although it is possible for the roads in a highway network to describe a rela-

tionship between cities that is linear (a one-way street, for example) or hierarchical (an

expressway and its off-ramps, for instance), we all have driven in circles enough times to know

that most highway networks are neither linear nor hierarchical. What we need is a data

structure that lets us connect each city to any of the other cities in the network. This type of

data structure is referred to as a graph.

Like a tree, a graph consists of a set of nodes (called vertices) and a set of edges. Unlike a tree,

an edge in a graph can connect any pair of vertices, not simply a parent and its child. The fol-

lowing graph represents a simple highway network.

B

A

C

D

E

50

93

87

210

112

100

TEAMFL
Y

Team-Fly®

LABORATORY 14

326

Each vertex in the graph has a unique label that denotes a particular city. Each edge has a

weight that denotes the cost (measured in terms of distance, time, or money) of traversing the

corresponding road. Note that the edges in the graph are undirected; that is, if there is an edge

connecting a pair of vertices A and B, this edge can be used to move either from A to B, or from

B to A. The resulting weighted, undirected graph expresses the cost of traveling between cities

using the roads in the highway network. In this laboratory, the focus is on the implementation

and application of weighted, undirected graphs.

Weighted Graph ADT

Elements

Each vertex in a graph has a label (of type String) that uniquely identifies it. Vertices may

include additional data.

Structure

The relationship between the vertices in a graph are expressed using a set of undirected edges,

where each edge connects one pair of vertices. Collectively, these edges define a symmetric

relation between the vertices. Each edge in a weighted graph has a weight that denotes the cost

of traversing that edge. This relationship is represented by an adjacency matrix of size n � n,

where n is the maximum number of vertices allowed in the graph.

Constructors and Methods

WtGraph ()

Precondition:

None.
Postcondition:

Default Constructor. Calls setup, which creates an empty graph. Allocates enough memory

for an adjacency matrix representation of the graph containing DEF_MAX_GRAPH_SIZE (a

constant value) vertices.

WtGraph (int maxNumber)

Precondition:

maxNumber > 0.
Postcondition:

Constructor. Calls setup, which creates an empty graph. Allocates enough memory for an

adjacency matrix representation of the graph containing maxNumber vertices.

LABORATORY 14

327

void setup (int maxNumber)

Precondition:

maxNumber > 0. A helper method for the constructors. Is declared private since only

WtGraph constructors should call this method.
Postcondition:

Creates an empty graph. Allocates enough memory for an adjacency matrix representation

of the graph containing maxNumber elements.

void insertVertex (Vertex newVertex)

Precondition:

Graph is not full.
Postcondition:

Inserts newVertex into a graph. If the vertex already exists in the graph, then updates it. If

the vertex is new, the entire structure (both the vertex list and the adjacency matrix) is

updated.

void insertEdge (String v1, String v2, int wt)

Precondition:

Graph includes vertices v1 and v2.
Postcondition:

Inserts an undirected edge connecting vertices v1 and v2 into a graph. The weight of the

edge is wt. If there is already an edge connecting these vertices, then updates the weight of

the edge.

Vertex retrieveVertex (String v)

Precondition:

None.
Postcondition:

Searches a graph for vertex v. If this vertex is found, then returns the vertex’s data. Other-

wise, returns null.

int edgeWeight (String v1, String v2)

Precondition:

Graph includes vertices v1 and v2.
Postcondition:

Searches a graph for the edge connecting vertices v1 and v2. If this edge exists, then returns

the weight of the edge. Otherwise, returns an undefined weight.

void removeVertex (String v)

Precondition:

Graph includes vertex v.
Postcondition:

Removes vertex v from a graph.

LABORATORY 14

328

void removeEdge (String v1, String v2)

Precondition:

Graph includes vertices v1 and v2.
Postcondition:

Removes the edge connecting vertices v1 and v2 from a graph.

void clear ()

Precondition:

None.
Postcondition:

Removes all the vertices and edges in a graph.

boolean isEmpty ()

Precondition:

None.
Postcondition:

Returns true if a graph is empty (no vertices). Otherwise, returns false.

boolean isFull ()

Precondition:

None.
Postcondition:

Returns true if a graph is full. Otherwise, returns false.

void showStructure ()

Precondition:

None.
Postcondition:

Outputs a graph with the vertices in array form and the edges in adjacency matrix form

(with their weights). If the graph is empty, outputs “Empty graph”. Note that this operation

is intended for testing/debugging purposes only.

LABORATORY 14

329

LABORATORY 14: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

LABORATORY 14

331

LABORATORY 14: Prelab Exercise

Name

Hour/Period/Section

Date

You can represent a graph in many ways. In this laboratory, you use an array to store the set of

vertices and an adjacency matrix to store the set of edges. An entry (j, k) in an adjacency

matrix contains information on the edge that goes from the vertex with index j to the vertex

with index k. For a weighted graph, each matrix entry contains the weight of the corresponding

edge. A specially chosen weight value is used to indicate edges that are missing from the graph.

The following graph

yields the vertex list and adjacency matrix shown below. A ‘–’ is used to denote an edge that is

missing from the graph.

Vertex A has an array index of 0 and vertex C has an array index of 2. The weight of the edge from vertex

A to vertex C is therefore stored in entry (0, 2) in the adjacency matrix.

Vertex List Adjacency Matrix

Index Label From/To 0 1 2 3 4

0 A 0 — 50 100 — —

1 B 1 50 — — 93 —

2 C 2 100 — — 112 210

3 D 3 — 93 112 — 87

4 E 4 — — 210 87 —

B

A

C

D

E

50

93

87

210

112

100

LABORATORY 14

332

Step 1: Implement the operations in the Weighted Graph ADT using an array to store the ver-

tices (vertexList) and an adjacency matrix to store the edges (adjMatrix). The number of verti-

ces in a graph is not fixed; therefore, you need to store the actual number of vertices in the

graph (size). Remember that in Java the size of the array is held in a constant called length in

the array object. Therefore, in Java a separate variable (such as maxSize) is not necessary, since

the maximum number of elements our graph can hold can be determined by referencing

length—more specifically in our case, vertexList.length.

Base your implementation on the following incomplete definitions from the file WtGraph.jshl.

The class Vertex (for the vertexList) is defined in the file Vertex.java. You are to fill in the Java

code for each of the constructors and methods where only the method headers are given. Each

method header appears on a line by itself and does not contain a semicolon. This is not an

interface file, so a semicolon should not appear at the end of a method header. Each of these

methods needs to be fully implemented by writing the body of code for implementing that par-

ticular method and enclosing the body of that method in braces.

public class Vertex
{
 // Data members
 private String label; // Vertex label

 // Constructor
 public Vertex(String name)
 {
 label = name;
 }

 // Class methods
 public String getLabel()
 {
 return label;
 }

} // class Vertex

public class WtGraph
{
 // Default number of vertices (a constant)
 public final int DEF_MAX_GRAPH_SIZE = 10;
 // "Weight" of a missing edge (a constant) — the max int value
 public static final int INFINITE_EDGE_WT = Integer.MAX_VALUE;

 // Data members
 private int size; // Actual number of vertices in the graph
 private Vertex [] vertexList; // Vertex list
 private int [][] adjMatrix; // Adjacency matrix (a 2D array)

LABORATORY 14

333

 // ------The following are Method Headers ONLY ------ //
 // each of these methods needs to be fully implemented

 // Constructors
 public WtGraph()
 public WtGraph (int maxNumber)

 // Class methods
 private void setUp(int maxNumber) // Called by constructors

 // Graph manipulation methods
 public void insertVertex (Vertex newVertex) // Insert vertex
 public void insertEdge (String v1, String v2, int wt)// Insert edge
 public Vertex retrieveVertex (String v) // Get vertex
 public int edgeWeight (String v1, String v2) // Get edge wt
 public void removeVertex (String v) // Remove vertex
 public void removeEdge (String v1, String v2) // Remove edge
 public void clear () // Clear graph

 // Graph status methods
 public boolean isEmpty () // Is graph empty?
 public boolean isFull () // Is graph full?

 // Output the graph structure — used in testing /debugging
 public void showStructure ()

 // Facilitator methods
 private int index (String v) // Converts vertex label to an

// adjacency matrix index
 private int getEdge (int row, int col) // Get edge weight using

// adjacency matrix indices
 private void setEdge (int row, int col, int wt) // Set edge wt using

// adjacency matrix indices
} // class WtGraph

Your implementations of the public methods should use your getEdge() and setEdge() facili-

tator methods to access entries in the adjacency matrix. For example, the assignment

statement

setEdge(2, 3, 100);

uses the setEdge() method to assign a weight of 100 to the entry in the second row, third

column of the adjacency matrix and the if statement

if (getEdge(j, k) == WtGraph.INFINITE_EDGE_WT)
 System.out.println("Edge is missing from graph");

uses the getEdge() method to test whether there is an edge connecting the vertex with index j

and the vertex with index k.

Step 2: Save your implementation of the Weighted Graph ADT in the file WtGraph.java. Be

sure to document your code.

LABORATORY 14

334

LABORATORY 14: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program in the file TestWtGraph.java allows you to interactively test your implemen-

tation of the Weighted Graph ADT using the following commands.

Note that v and w denote vertex labels (of type String) not individual characters (of type char).

As a result, you must be careful to enter these commands using the exact format shown above—

including spaces.

Step 1: Prepare a test plan for your implementation of the Weighted Graph ADT. Your test

plan should cover graphs in which the vertices are connected in a variety of ways. Be sure to

include test cases that attempt to retrieve edges that do not exist or that connect nonexistent

vertices. A test plan form follows.

Command Action

+v Insert vertex v.

=v w wt Insert an edge connecting vertices v and w. The weight of this edge is wt.

?v Retrieve vertex v.

#v w Retrieve the edge connecting vertices v and w and output its weight.

-v Remove vertex v.

!v w Remove the edge connecting vertices v and w.

E Report whether the graph is empty.

F Report whether the graph is full.

C Clear the graph.

Q Quit the test program.

LABORATORY 14

335

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them

and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the Operations in the Weighted Graph ADT

TEAMFL
Y

Team-Fly®

LABORATORY 14

336

LABORATORY 14: In-lab Exercise 1

Name

Hour/Period/Section

Date

A communications network consists of a set of switching centers (vertices) and a set of commu-

nications lines (edges) that connect these centers. When designing a network, a communica-

tions company needs to know whether the resulting network will continue to support

communications between all centers should one of these communications lines be rendered

inoperative due to weather or equipment failure. That is, they need to know the answer to the

following question:

Given a graph in which there is a path from every vertex to every other vertex, will

removing any edge from the graph always produce a graph in which there is still a path

from every vertex to every other vertex?

Obviously, the answer to this question depends on the graph. The answer for the graph shown

below is yes.

On the other hand, you can divide the following graph into two disconnected subgraphs by

removing the edge connecting vertices D and E. Thus, for this graph the answer is no.

A B E

C D F

A B E

C D F

G

H

LABORATORY 14

337

Although determining an answer to this question for an arbitrary graph is somewhat difficult,

there are certain classes of graphs for which the answer is always yes. Given the following defi-

nitions, a rule can be derived using simple graph theory.

• A graph G is said to be connected if there exists a path from every vertex in G to every other

vertex in G.

• The degree of a vertex V in a graph G is the number of edges in G that connect to V, where an

edge from V to itself counts twice.

The rule states:

If all of the vertices in a connected graph are of even degree, then removing any one edge

from the graph will always produce a connected graph.

If this rule applies to a graph, then you know that the answer to the previous question is yes for

that graph. Note that this rule tells you nothing about connected graphs in which the degree of

one or more vertices is odd.

The following Weighted Graph ADT operation checks whether every vertex in a graph is of even

degree.

boolean allEven ()

Precondition:

The graph is connected.
Postcondition:

Returns true if every vertex in a graph is of even degree. Otherwise, returns false.

Step 1: Implement the allEven operation described above and add it to the file WtGraph.java.

Step 2: Save the file TestWtGraph.java as TestWtGraph2.java. Revise the TestWtGraph class

name accordingly. Activate the ‘D’ (degree) test in the test program TestWtGraph2.java by

removing the comment delimiter (and the character ‘D’) from the lines that begin with “//D”.

Step 3: Prepare a test plan for this operation that includes graphs in which the vertices are

connected in a variety of ways. A test plan form follows.

LABORATORY 14

338

Step 4: Execute your test plan. If you discover mistakes in your implementation of the

allEven operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the allEven Operation

LABORATORY 14

339

LABORATORY 14: In-lab Exercise 2

Name

Hour/Period/Section

Date

Suppose you wish to create a road map of a particular highway network. In order to avoid

causing confusion among map users, you must be careful to color the cities in such a way that

no cities sharing a common border also share the same color. An assignment of colors to cities

that meets this criteria is called a proper coloring of the map.

Restating this problem in terms of a graph, we say that an assignment of colors to the vertices in

a graph is a proper coloring of the graph if no vertex is assigned the same color as an adjacent

vertex. The assignment of colors (gray and white) shown in the following graph is an example of

a proper coloring.

Two colors are not always enough to produce a proper coloring. One of the most famous the-

orems in graph theory, the Four-Color Theorem, states that creating a proper coloring of any

planar graph (that is, any graph that can be drawn on a sheet of paper without having the edges

cross one another) requires using at most four colors. A planar graph that requires four colors is

shown below. Note that if a graph is not planar, you may need to use more than four colors.

B

A

C

D

F

E

A B

C D

LABORATORY 14

340

The following Weighted Graph ADT operation determines whether a graph has a proper col-

oring.

boolean properColoring ()

Precondition:

All the vertices have been assigned a color.
Postcondition:

Returns true if no vertex in a graph has the same color as an adjacent vertex. Otherwise,

returns false.

Step 1: Add the following data member to the Vertex class definition in the file Vertex.java.

private String color; // Vertex color ("r" for red and so forth)

Also add the necessary methods to modify and access the vertex color.

Step 2: Implement the properColoring operation described above and add it to the file

WtGraph.java.

Step 3: Replace the showStructure() method in the file WtGraph.java with the

showStructure() method that outputs a vertex’s color in addition to its label. An implementa-

tion of this showStructure() method is given in the file show14.txt.

Step 4: Save the file TestWtGraph.java as TestWtGraph3.java. Revise the TestWtGraph class

name accordingly. Activate the ‘PC’ (proper coloring) test in the test program

TestWtGraph3.java by removing the comment delimiter (and the characters ‘PC’) from the lines

that begin with “//PC”.

Step 5: Prepare a test plan for the properColoring operation that includes a variety of graphs

and vertex colorings. A test plan form follows.

LABORATORY 14

341

Step 6: Execute your test plan. If you discover mistakes in your implementation of the

properColoring operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the properColoring Operation

LABORATORY 14

342

LABORATORY 14: In-lab Exercise 3

Name

Hour/Period/Section

Date

In many applications of weighted graphs, you need to determine not only whether there is an

edge connecting a pair of vertices, but whether there is a path connecting the vertices. By

extending the concept of an adjacency matrix, you can produce a path matrix in which an

entry (j, k) contains the cost of the least costly (or shortest) path from the vertex with index j to

the vertex with index k. The following graph

yields the path matrix shown below.

This graph includes a number of paths from vertex A to vertex E. The cost of the least costly

path connecting these vertices is stored in entry (0, 4) in the path matrix, where 0 is the index

of vertex A and 4 is the index of vertex E. The corresponding path is ABDE.

Vertex List Path Matrix

Index Label From/To 0 1 2 3 4

0 A 0 0 50 100 143 230

1 B 1 50 0 150 93 180

2 C 2 100 150 0 112 199

3 D 3 143 93 112 0 87

4 E 4 230 180 199 87 0

B

A

C

D

E

50

93

87

210

112

100

LABORATORY 14

343

In creating this path matrix, we have assumed that a path with cost 0 exists from a vertex to

itself (entries of the form (j, j)). This assumption is based on the view that traveling from a

vertex to itself is a nonevent and thus costs nothing. Depending on how you intend to apply the

information in a graph, you may want to use an alternate assumption.

Given the adjacency matrix for a graph, we begin construction of the path matrix by noting that

all edges are paths. These one-edge-long paths are combined to form two-edge-long paths by

applying the following reasoning.

If there exists a path from a vertex j to a vertex m and
 there exists a path from a vertex m to a vertex k,
then there exists a path from vertex j to vertex k.

We can apply this same reasoning to these newly generated paths to form paths consisting of

more and more edges. The key to this process is to enumerate and combine paths in a manner

that is both complete and efficient. One approach to this task is described in the following algo-

rithm, known as Warshall’s algorithm. Note that variables j, k, and m refer to vertex indices, not

vertex labels.

Initialize the path matrix so that it is the same as the edge matrix (all edges are paths).
Create a path with cost 0 from each vertex back to itself.

for (m = 0 ; m < size ; m++)
 for (j = 0 ; j < size ; j++)
 for (k = 0 ; k < size ; k++)
 if there exists a path from vertex j to vertex m and
 there exists a path from vertex m to vertex k,
 then add a path from vertex j to vertex k to the path matrix.

This algorithm establishes the existence of paths between vertices but not their costs. Fortu-

nately, by extending the reasoning used above, we can easily determine the costs of the least

costly paths between vertices.

If there exists a path from a vertex j to a vertex m and
 there exists a path from a vertex m to a vertex k and
 the cost of going from j to m to k is less than entry (j,k) in the path matrix,
then replace entry (j,k) with the sum of entries (j,m) and (m,k).

Incorporating this reasoning into the previous algorithm yields the following algorithm, known

as Floyd’s algorithm.

Initialize the path matrix so that it is the same as the edge matrix (all edges are paths).
Create a path with cost 0 from each vertex back to itself.
for (m = 0 ; m < size ; m++)
 for (j = 0 ; j < size ; j++)
 for (k = 0 ; k < size ; k++)
 If there exists a path from vertex j to vertex m and
 there exists a path from vertex m to vertex k and
 the sum of entries (j,m) and (m,k) is less than entry (j,k) in the path
 matrix,
 then replace entry (j,k) with the sum of entries (j,m) and (m,k).

LABORATORY 14

344

The following Weighted Graph ADT operation computes a graph’s path matrix.

void computePaths ()

Precondition:

None.
Postcondition:

Computes a graph’s path matrix.

Step 1: Add the data member

private int [][] pathMatrix; // Path matrix (a 2D array)

to the WtGraph class definition in the file WtGraph.java. Revise the WtGraph constructors as

needed.

Step 2: Implement the computePaths method described above and add it to the file

WtGraph.java. You will probably also want to implement facilitator methods for path similar to

those used for edge.

Step 3: Replace the showStructure() method in the file WtGraph.java with a showStructure()

method that outputs a graph’s path matrix in addition to its vertex list and adjacency matrix. An

implementation of this showStructure() method is given in the file show14.txt.

Step 4: Save the file TestWtGraph.java as TestWtGraph4.java. Revise the TestWtGraph class

name accordingly. Activate the ‘PM’ (path matrix) test in the test program TestWtGraph4.java

by removing the comment delimiter (and the characters ‘PM’) from the lines that begin with

“//PM”.

Step 5: Prepare a test plan for the computePaths operation that includes graphs in which the

vertices are connected in a variety of ways with a variety of weights. Be sure to include test

cases in which an edge between a pair of vertices has a higher cost than a multiedge path

between these same vertices. The edge CE and the path CDE in the graph shown above have

this property. A test plan form follows.

LABORATORY 14

345

Step 6: Execute your test plan. If you discover mistakes in your implementation of the

computePaths operation, correct them and execute your test plan again.

Test case Commands Expected result Checked

Test Plan for the computePaths Operation

TEAMFL
Y

Team-Fly®

LABORATORY 14

347

LABORATORY 14: Postlab Exercise 1

Name

Hour/Period/Section

Date

Floyd’s algorithm (In-lab Exercise 3) computes the shortest path between each pair of vertices

in a graph. Suppose you need to know not only the cost of the shortest path between a pair of

vertices, but also which vertices lie along this path. At first, it may seem that you need to store

a list of vertices for every entry in the path matrix. Fortunately, you do not need to store this

much information. For each entry (j, k) in the path matrix, all you need to know is the index of

the vertex that follows j on the shortest path from j to k—that is, the index of the second vertex

on the shortest path from j to k. The following graph, for example,

yields the augmented path matrix shown below.

Vertex List Path Matrix (Cost | Second Vertex on Shortest Path

Index Label From/To 0 1 2 3 4

0 A 0 0|0 50|1 100|2 143|1 230|1

1 B 1 50|0 0|1 150|0 93|3 180|3

2 C 2 100|0 150|0 0|2 112|3 199|3

3 D 3 143|1 93|1 112|2 0|3 87|4

4 E 4 230|3 180|3 199|3 87|3 0|4

B

A

C

D

E

50

93

87

210

112

100

LABORATORY 14

348

Entry (0, 4) in this path matrix indicates that the cost of the shortest path from vertex A to

vertex E is 230. It further indicates that vertex B (the vertex with index 1) is the second vertex

on the shortest path. Thus the shortest path is of the form AB...E.

Explain how you can use this augmented path matrix to list the vertices that lie along the

shortest path between a given pair of vertices.

LABORATORY 14

349

LABORATORY 14: Postlab Exercise 2

Name

Hour/Period/Section

Date

Give an example of a graph for which no proper coloring can be created using less than five

colors (see In-lab Exercise 2). Does your example contradict the Four-Color Theorem?

351

LABORATORY 1515

Performance
Evaluation
OBJECTIVES

In this laboratory, you

• implement a Timer class that you can use to measure the length of time between two

events—when a method starts and when it finishes, for instance.

• compare the performance of a set of searching routines.

• compare the performance of a set of sorting routines.

• compare the performance of your array and linked list implementations of the Stack ADT.

OVERVIEW

A routine’s performance can be judged in many ways and on many levels. In other laboratories,

you describe performance using order-of-magnitude estimates of a routine’s execution time. You

develop these estimates by analyzing how the routine performs its task, paying particular

attention to how it uses iteration and recursion. You then express the routine’s projected exe-

cution time as a routine of the number of data items (N) that it manipulates as it performs its

task. The results are estimates of the form O(N), O(LogN), and so on.

These order-of-magnitude estimates allow you to group routines based on their projected per-

formance under different conditions (best-case, worst-case, and so forth). As important as these

order-of-magnitude estimates are, they are by their very nature only estimates. They do not

take into account factors specific to a particular environment, such as how a routine is imple-

mented, the type of computer system on which it is being run, and the kind of data being pro-

cessed. If you are to accurately determine how well or poorly a given routine will perform in a

particular environment, you need to evaluate the routine in that environment.

In this laboratory, you measure the performance of a variety of routines. You begin by devel-

oping a set of tools that allow you to measure execution time. Then you use these tools to

measure the execution times of the routines.

LABORATORY 15

352

You can determine a routine’s execution time in a number of ways. The timings performed in

this laboratory will be generated using the approach summarized below.

Get the current system time (call this startTime).

Execute the routine.

Get the current system time (call this stopTime).

The routine’s execution time = stopTime – startTime.

If the routine executes very rapidly, then the difference between startTime and stopTime may

be too small for your computer system to measure. Should this be the case, you need to execute

the routine several times and divide the length of the resulting time interval by the number of

repetitions, as follows:

Get the current system time (call this startTime).

Execute the routine m times.

Get the current system time (call this stopTime).

The routine’s execution time = (stopTime – startTime) / m.

To use this approach, you must have some method for getting and storing the “current system

time.” One method in Java is to use a System call to get the current time of day, as we have

often done in other laboratories to seed the random number generator with a variant value. We

can store this information in a variable of the following type:

long currTime = System.currentTimeMillis();

This method returns the current time in terms of milliseconds since midnight, January 1, 1970.

In addition to acquiring and storing a point in time, you also need a convenient mechanism for

measuring time intervals. The Timer ADT described below uses the familiar stopwatch met-

aphor to describe the timing process.

Start the timer.
...

Stop the timer.

Read the elapsed time.

Timer ADT

Elements

A pair of times that denote the beginning and end of a time interval.

Structure

None.

LABORATORY 15

353

Methods

void start ()

Precondition:

None.
Postcondition:

Marks the beginning of a time interval (starts the timer).

void stop ()

Precondition:

The beginning of a time interval has been marked.
Postcondition:

Marks the end of a time interval (stops the timer).

double elapsedTime ()

Precondition:

The beginning and end of a time interval have been marked.
Postcondition:

Returns the length of the time interval in milliseconds.

LABORATORY 15

355

LABORATORY 15: Cover Sheet

Name

Hour/Period/Section

Date

Place a check mark (�) in the Assigned column next to the exercises that your instructor

has assigned to you. Attach this cover sheet to the front of the packet of materials that you

submit for this laboratory.

Exercise Assigned Completed

Prelab Exercise �

Bridge Exercise �

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total TEAMFL
Y

Team-Fly®

LABORATORY 15

357

LABORATORY 15: Prelab Exercise

Name

Hour/Period/Section

Date

Step 1: Create an implementation of the Timer ADT. Base your implementation on the follow-

ing incomplete definitions from the file Timer.jshl. You are to fill in the Java code for each of the

methods where the implementation braces are empty.

class Timer
{
 // Data members
 private long startTime, // Time that the timer was started
 stopTime; // Time that the timer was stopped

 // Start and stop the timer
 public void start ()
 { }
 public void stop ()
 { }

 // Compute the elapsed time (in milliseconds)
 public long elapsedTime ()
 { }

} // class Timer

Step 2: Save your implementation of the Timer ADT in the file Timer.java.

Step 3: What is the resolution of your Timer implementation—that is, what is the shortest

time interval it can accurately measure?

LABORATORY 15

358

LABORATORY 15: Bridge Exercise

Name

Hour/Period/Section

Date

Check with your instructor as to whether you are to complete this exercise prior to your

lab period or during lab.

The test program in the program shell file TimerTest.jshl allows you to test the accuracy of your

implementation of the Timer ADT by measuring time intervals of known duration.

// Test program for the methods in the Timer ADT
import java.io.*;

class TestTimer
{
 static void main (String args[]) throws IOException, InterruptedException
 {
 Timer checkTimer = new Timer(); // Timer
 long timeInterval; // Time interval to pause

 // Initialize reader - To read a character at a time
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));
 // Initialize the tokenizer - To read tokens
 StreamTokenizer tokens = new StreamTokenizer(reader);

 // Get the time interval.
 System.out.println();
 System.out.print("Time interval to pause (in ___________) : ");
 tokens.nextToken();
 timeInterval = (long)tokens.nval;

 // Measure the time interval.
 checkTimer.start(); // Start the timer
 ____________(timeInterval); // Pause for the approximate time interval
 checkTimer.stop(); // Stop the timer

 System.out.println("Measured time interval (ms) : "
 + checkTimer.elapsedTime());
 }
} // TestTimer

Step 1: Two statements are left incomplete in this program: the call to the method that pauses

the program and the string that prompts the user to enter a time interval. Complete the pro-

gram by specifying the name of a “pause” method supported by your system. Common names

LABORATORY 15

359

for this method include sleep() and wait(). Add the time unit used by this method to the

prompt string. Save the resulting program as TestTimer.java.

Step 2: Prepare a test plan for your implementation of the Timer ADT. Your test plan should

cover intervals of various lengths, including intervals at or near the resolution of your imple-

mentation. A test plan form follows. Please note that due to disparity between system clock

interrupts for updating and actual CPU cycles, there may be as much as a 50 ms overrun

between the start time plus pause time (actual time interval) and the returned stop time (mea-

sured time interval) for your program.

Step 3: Execute your test plan. If you discover mistakes in your implementation, correct them

and execute your test plan again.

Test case

Actual time
interval

(in milliseconds)
Measured time interval

(in milliseconds) Checked

Test Plan for the Operations in the Timer ADT

LABORATORY 15

360

LABORATORY 15: In-lab Exercise 1

Name

Hour/Period/Section

Date

In this exercise, you examine the performance of the searching routines in the file Search.java.

Step 1: Use the program in the file TimeSearch.java to measure the execution times of the

linearSearch(), binarySearch(), and unknownSearch() routines. This program begins by gener-

ating an ordered list of integer keys (keyList) and a set of keys to search for in this list (search-

Set). It then measures the amount of time it takes to search for the keys using the specified

routines and computes the average time per search.

The constant NUM_REPETITIONS controls how many times each search is executed. Depending on

the speed of your system, you may need to use a value of NUM_REPETITIONS that differs from the

value given in the test program. Before continuing, you may want to check with your

instructor regarding what value of NUM_REPETITIONS you should use.

Step 2: Complete the following table by measuring the execution times of the linearSearch(),

binarySearch(), and unknownSearch() routines for each of the values of numKeys listed in the

table.

Routine Number of keys in the list (numKeys)

1000 2000 4000

linearSearch() O(N)

binarySearch() O(LogN)

unknownSearch() O()

Note: Times shown are in milliseconds.

Execution Times of a Set of Searching Routines

LABORATORY 15

361

Step 3: Plot your results below.

1,000 2,000 3,000 4,000

Number of keys in the list (numKeys)

S
e

a
rc

h
 t

im
e

 (
m

s)

LABORATORY 15

362

Step 4: How well do your measured times conform with the order-of-magnitude estimates

given for the linearSearch() and binarySearch() routines?

Step 5: Using the code in the file Search.java and your measured execution times as a basis,

develop an order-of-magnitude estimate of the execution time of the unknownSearch() routine.

Briefly explain your reasoning behind this estimate.

LABORATORY 15

363

LABORATORY 15: In-lab Exercise 2

Name

Hour/Period/Section

Date

In this exercise, you examine the performance of the set of sorting routines in the file Sort.java.

Step 1: Use the program in the file TimeSort.java to measure the execution times of the

selectionSort(), quickSort(), and unknownSort() routines. This program begins by generating

a list of integer keys (keyList). It then measures the amount of time it takes to sort this list into

ascending order using the specified routine.

The constant NUM_REPETITIONS controls how many times each search is executed. Depending on

the speed of your system, you may need to use a value of NUM_REPETITIONS that differs from the

value given in the test program. Before continuing, you may want to check with your

instructor regarding what value of NUM_REPETITIONS you should use.

Step 2: Complete the following table by measuring the execution times of the selection-

Sort(), quickSort(), and unknownSort() routines for each combination of the three test catego-

ries and the three values of numKeys listed in the table.

Routine Number of keys in the list (numKeys)

1000 2000 4000

selectionSort() O(N2)

quickSort() O(N LogN)

unknownSort() O()

Note: Times shown are in milliseconds.

Execution Times of a Set of Sorting Routines

LABORATORY 15

364

Step 3: Plot your results below.

1,000 2,000 3,000 4,000

Number of keys in the list (numKeys)

S
e

a
rc

h
 t

im
e

 (
m

s)

LABORATORY 15

365

Step 4: How well do your measured times conform with the order-of-magnitude estimates

given for the selectionSort() and quickSort() routines?

Step 5: Using the code in the file Sort.java and your measured execution times as a basis,

develop an order-of-magnitude estimate of the execution time of the unknownSort() routine.

Briefly explain your reasoning behind this estimate.

TEAMFL
Y

Team-Fly®

LABORATORY 15

366

LABORATORY 15: In-lab Exercise 3

Name

Hour/Period/Section

Date

In this exercise, you measure the performance of the array and linked list implementations of

the Stack ADT that you created in Laboratory 5.

Step 1: Using the implementation of the Timer ADT that you created in the Prelab as a foun-

dation, write a program that measures the time it takes to completely fill and then empty a

10,000-element stack using the push and pop operations in Stack ADT. Assuming testStack is

of type Stack, you can use the following statement to print whether you are testing the class

AStack or LStack:

System.out.println("Testing the " + testStack.getClass());

Save your file as TimeStack.java. Because these operations execute so rapidly, you may need to

fill and empty the stack a number of times in order to produce an accurate measurement of the

time it takes to complete a fill/empty cycle.

Step 2: Use your program to measure the time it takes each of your Stack ADT implementa-

tions to fill and empty a stack containing 10,000 characters and record the results in the follow-

ing table.

LABORATORY 15

367

Step 3: Repeat these measurements using a stack containing 10,000 long integers and record

the results below.

Stack ADT implementation Stack Element

char long int

Array implementation

Linked list implementation

Note: Times shown are in milliseconds.

Time to Fill and Empty a 10,000-Element Stack

LABORATORY 15

369

LABORATORY 15: Postlab Exercise 1

Name

Hour/Period/Section

Date

You are given another pair of searching routines. Both routines have order-of-magnitude exe-

cution time estimates of O(N). When you measure the actual execution times of these routines

on a given system using a variety of different data sets, you discover that one routine consis-

tently executes five times faster than the other. How can both routines be O(N), yet have dif-

ferent execution times when they are compared using the same system and the same data?

LABORATORY 15

370

LABORATORY 15: Postlab Exercise 2

Name

Hour/Period/Section

Date

Using your measurements from In-lab Exercises 1 and 2 as a basis, estimate the execution times

of the routines listed below for a randomly generated list of 8,000 integer keys. Do not measure

the actual execution times of these routines using a list of this size. Estimate what their exe-

cution times will be based on the measurements you have already done. Briefly explain your

reasoning behind each estimate.

Routine Number of keys in the list (numKeys) = 8000

linearSearch() Estimated execution time:

Explanation:

binarySearch() Estimated execution time:

Explanation:

Note: Times shown are in milliseconds.

Execution Times of a Set of Sorting Routines

LABORATORY 15

371

Routine Number of keys in the list (numKeys) = 8000

selectionSort() Estimated execution time:

Explanation:

quickSort() Estimated execution time:

Explanation:

Note: Times shown are in milliseconds.

Execution Times of a Set of Sorting Routines

373

LABORATORY 1616

Team Software
Development Project
OBJECTIVES

In this laboratory, you

• see how a complex problem can be solved by decomposing it into a set of interrelated objects.

• get a feel for the dynamics of a team programming environment.

• learn some object-oriented analysis and design (OOAD) techniques.

• create and implement a program design for a given complex problem.

OVERVIEW

The programs you developed in previous labs solved very specific problems. These programs

tended to be relatively short and you were able to create them by yourself directly from the

problem descriptions. As problems become more complex, however, team programming efforts

and formal program designs become necessary parts of the program development process.

In this laboratory, you work with other students as part a software development team that

designs and implements a programming project using established OOAD techniques. This

program development process is done over the space of two weeks. During the first week, you

work with your teammates to create a program design. In the second week, you implement your

design to form a working program.

LABORATORY 16

375

LABORATORY 16 — Week 1: Prelab Exercise 1

Object-Oriented Analysis and Design Intro

Name

Hour/Period/Section

Date

Given a complex problem, how do you begin to develop a program to solve the problem? Unfor-

tunately, there is no simple answer to this question. How you look at the problem, what form

you imagine the solution will take, and what programming language and techniques you intend

to use—all of these shape not only the solution but the process of finding a solution.

In this laboratory, you use an object-oriented program development style in which you analyze

a problem in terms of the objects in the problem. An object is something with a well-defined set

of attributes and behaviors. A statue, a car, a fish, a movie, a party, and a trip—all of these are

examples of objects from the real world. We humans are expert at thinking about the world

around us in terms of objects. Object-oriented analysis and design (OOAD) and object-ori-

ented programming (OOP) attempt to apply this ability to the design and creation of programs.

Identifying the object is the most important step in OOAD. Among the recommended tech-

niques for identifying potential objects is the “using nouns” technique of Abbott/Booch.1 This

technique will not find all the objects but is quite simple to apply. In this process the designer

identifies all the nouns, pronouns, and noun phrases in the English narrative of the problem.

Thus the designer begins to identify potential objects. In like manner, all verbs and predicate

phrases are used to help identify object behaviors, and all adjectives are used to help identify

object attributes.

Rather than discussing object-oriented design in the abstract, let’s try to find the objects in the

following problem.

Part of a child’s math education program is a calculator that displays a sad face whenever

the number displayed by the calculator is negative and a happy face when the number dis-

played is positive. The calculator responds to the following commands (where num is a

floating-point number): +num, �num, *num, /num, and C (clear). In addition, the child

can use the Q (quit) command to end the program.

1Booch, G., “Object-Oriented Development,” IEEE Trans. On Software Engineering, vol. SE-12, no. 2, pp.

211–21, February 1986.

TEAMFL
Y

Team-Fly®

LABORATORY 16

376

Based on the “using nouns” technique, one object is obvious: the calculator. What attributes

and behaviors are associated with the calculator? That depends on who is doing the associ-

ating—different people will produce different results. One possible set of attributes and

behaviors is shown below.

Object: Calculator

Attributes: Number displayed (the accumulator)

Behaviors: Performs arithmetic operations

Displays number

What other objects are there? The problem refers to a display that shows a happy or sad face

depending on the number stored in the calculator’s accumulator. This face display is another

object.

Object: Face

Attributes: Happy or sad

Behaviors: Changes face to happy

Changes face to sad

Displays face

Could we have combined the Calculator and Face objects into one object? Yes. The process of

finding and using objects is not one with rigid rules. We chose a definition of a calculator that

fits a broad range of calculators, not just the one discussed in this problem. Other choices may

be equally valid, however.

Finding the final object requires a little more effort. Some object should coordinate the actions

of the Calculator and Face objects based on the command input by the child. This object is

commonly called the interface.

Object: Interface

Attributes: Calculator

Face

Command

Behaviors: Coordinates the calculator and face displays

Reads a command

Executes the command

Now that we have identified a set of objects, we need to develop a Java class for each object. As

a general rule, an object’s attributes become data members of the object’s class and its

behaviors become class methods. Keep in mind, however, that in program design there are no

inflexible rules, only guidelines.

Let’s start with the Face object. This object has an attribute that indicates whether the face is a

happy face or a sad one. It has behaviors that display the face and change it to happy or to sad.

We represent the Face object using a Java class called Face in which the happy/sad attribute is

LABORATORY 16

377

represented by an integer data member state and the behaviors are represented by the class

methods display(), makeHappy(), and makeSad(). An incomplete definition/implementation for

the Face class and the specifications for its class methods are shown below. Note that we have

included a constructor that initializes a face to happy when it is declared (constructed).

class Face
{
 // Data members
 private int state; // Face state (1=happy, 0=sad)

 // Class Methods
 public Face () // Constructor
 public void makeHappy () // Set face to happy
 public void makeSad () // Set face to sad
 public void display () // Display face
}

Face ()

Precondition:

None.
Postcondition:

Default Constructor. Creates a face and initializes it to happy.

void makeHappy ()

Precondition:

None.
Postcondition:

Changes a face to happy.

void makeSad ()

Precondition:

None.
Postcondition:

Changes a face to sad.

void display ()

Precondition:

None.
Postcondition:

Displays a face.

Continuing with the Calculator object, we represent this object’s accumulator attribute by a

double-precision floating-point data member accum and its behaviors by the class methods

add(), subtract(), multiply(), divide(), and display(). We complete the set of class methods

LABORATORY 16

378

by adding a constructor and an access method, value(). The constructor initializes the accu-

mulator to zero and the value() method communicates the accumulator’s value to other

classes. An incomplete definition/implementation for the Calculator class is shown below.

class Calculator
{
 // Data members
 private double accum; // Accumulator

 // Class Methods
 public Calculator () // Construct calculator
 public void add (double num) // Add to accumulator
 public void subtract (double num) // Subtract from accum
 public void multiply (double num) // Multiply accumulator
 public void divide (double num) // Divide accumulator
 public void clear () // Clear accumulator
 public double value () // Return accumulator
 public void display () // Display calculator
}

Calculator ()

Precondition:

None.
Postcondition:

Default Constructor. Creates a calculator and initializes the accumulator to zero.

void add (double num)

Precondition:

None.
Postcondition:

Adds num to the accumulator.

void subtract (double num)

Precondition:

None.
Postcondition:

Subtracts num from the accumulator.

void multiply (double num)

Precondition:

None.
Postcondition:

Multiplies the accumulator by num.

LABORATORY 16

379

void divide (double num)

Precondition:

The value of num is not zero.
Postcondition:

Divides the accumulator by num.

void clear ()

Precondition:

None.
Postcondition:

Clears the accumulator (sets it to zero).

double value ()

Precondition:

None.
Postcondition:

Returns the value stored in the accumulator.

void display ()

Precondition:

None.
Postcondition:

Displays a calculator.

We create the Interface class in much the same way we did the Calculator and Face classes. In

this case, we represent the calculator, face, and command attributes by three data members:

calc, smiley, and userCmd.

class Interface
{
 ...
 // Data members
 private Calculator calc; // Calculator object
 private Face smiley; // Face object
 private Command userCmd; // User command

}

All the data members in the Interface class are objects in other classes rather than one of

Java’s predefined data types. We have already defined two of these classes. The userCmd data

member stores the last command the user entered along with the command’s argument (if any)

in the class Command. The Command class is defined below. Note that its data members are not

LABORATORY 16

380

declared private, so they are treated as public by other classes in this Java package or sub-

directory.

class Command
{
 // Data Members
 char cmd; // Command name (letter)
 double arg; // Command argument
}

We represent the Interface object’s behaviors by the class methods generateDisplay(),

getCommand(), and executeCommand(). To these we add a constructor that initializes the data

members and a done() method that indicates when the child has entered the Q (quit) command.

The incomplete definition/implementation for the Interface class and the specifications for its

class methods are given below.

class Interface
{
 // Data members
 private Calculator calc; // Calculator object
 private Face smiley; // Face object
 private Command userCmd; // User command

 // Class Methods
 public Interface () // Constructor
 public void generateDisplay () // Generate interface display
 public void getCommand () // Get user command
 public void executeCommand () // Process user command
 public boolean done () // Exit interface

}

Interface ()

Precondition:

None.
Postcondition:

Constructor. Creates an interface and initializes its data members.

void generateDisplay ()

Precondition:

None.
Postcondition:

Generates an interface display consisting of a calculator and a happy/sad face.

void getCommand ()

Precondition:

None.
Postcondition:

Prompts the user for a command, reads in a command from the keyboard, and stores it in

userCmd.

LABORATORY 16

381

void executeCommand ()

Precondition:

None.
Postcondition:

Executes the user’s last command (in userCmd).

boolean done ()

Precondition:

None.
Postcondition:

Returns true if the user has entered the Q (quit) command. Otherwise, returns false.

We now have a set of well-defined classes for the child’s calculator problem. Taken together,

these object descriptions, class definitions, and method specifications provide a design for one

solution to this problem. With a good design, developing an implementation is an easy task.

With a bad design, implementation is a difficult, if not impossible, job. That is why the design

development process is so important—in many ways, it is the art that defines computer

science. Creativity and insight in the design phase lead to programs that are easy to implement

and maintain. More important, they result in programs that are enjoyable to use. Mistakes made

in the design phase, on the other hand, are costly to fix and often yield a poor product.

FOLLOW-UP EXERCISE

A stoplight is a familiar object on our roadways. Define the attributes and behaviors for a stop-

light below.

Object: Stoplight

Attributes:

Behaviors:

LABORATORY 16

382

LABORATORY 16 — Week 1: Prelab Exercise 2

OOAD REVISITED

Name

Hour/Period/Section

Date

DESCRIPTION OF THE OOAD/PROGRAMMING PROJECT

Overview

Many people use a calendar to keep track of assignments, parties, appointments and the like. In

this project, you create a program that takes a set of dated notes and generates an HTML note-

board consisting of a set of monthly calendars and associated notes. The contents and

appearance of the HTML noteboard are specified by a noteboard file and a set of user-controlled

content filters and appearance properties. This HTML noteboard is to be viewed using a web

browser. For those unfamiliar with writing HTML, there are several tutorials and the like readily

available on the Internet.

You are to view the following description as the program specifications provided by the user.

Therefore, as in a real workplace situation, you must make every effort to concisely satisfy each

of these program specifications.

Noteboard File Format

The noteboard (.nbd) file consists of three parts: the calendar year, the names of 12 image files

(one for each month, in month order), and an unordered set of notes of the following form

month day category text

where

• month and day identify the month and day to which the note applies.

• category identifies the category to which the note belongs (e.g., “personal”, “school”).

• text is the note’s narrative text.

LABORATORY 16

383

A sample noteboard data file is shown below. Notice that while the image file names are listed in

month order, the notes are unordered. This data is provided in the file sample.nbd. This file

includes data for all 12 months of a single year.

Content Filters

Which months and which notes appear in the HTML display of the noteboard is determined by

the following filters.

Content filter Description

start month The first month to display, where month is in the range 1-12.

Default: 1

end month The last month to display, where month is in the range 1-12.

Default: 12

category filter Only the notes in the specified category are included when the noteboard display is gener-

ated. The category filter all indicates that all of the notes should be included.

Default: all

2002 Year

january.jpg

february.jpg Image file names for all 12 months

march.jpg

...

december.jpg

4 1 holiday April Fool’s Day

1 1 holiday New Year’s Day Notes

4 15 personal Taxes due

2 14 holiday Valentine’s Day

5 20 school Final exams

10 21 personal My birthday

...

LABORATORY 16

384

Appearance Properties

The appearance of the HTML version of the noteboard is determined by the following prop-

erties.

User Interface

Your program begins by prompting the user for the name of a noteboard (.nbd) file. It then

reads in the calendar year, the calendar image file names, and the entire set of notes, grouping

the notes by month as they are read in. You can assume that there are no more than 15 notes

per month.

Appearance property Description

background color Background color (bgcolor) for the noteboard display, where color is an HTML

color constant (e.g., red, white, blue).

Default: white

text color Text color for the noteboard display, where color is an HTML color constant.

Default: black

layout style Layout of the noteboard display, where style is either horizontal or vertical.

The corresponding layouts are illustrated below.

In either layout, each month’s calendar consists of an image and a calendar day

grid. In addition, the notes for each month are output in ascending order

based on day.

Default: horizontal

January

calendar

February

calendar

. . .

December

calendar

horizontal

January

notes

February

notes

. . .

December

notes

vertical

January calendar

January notes

February calendar

February notes

December calendar

December notes

. . .

LABORATORY 16

385

The user controls your program via a simple command-line interface. The current state of the

content filters and appearance properties is displayed (see the example below) and the user is

prompted to enter a command.

Filters
 start: 1
 end: 12
 category: all
Appearance
 background: white
 text: black
 layout: horizontal
 interactive true

Enter command (enter help to show command list):

The set of user commands is listed below with the first word (e.g., start) being the specific

command followed by its parameter (e.g., mm).

If the user enters a command other than one of the keyboard commands listed above, your

program should output the message “Invalid command.” See the OPTIONAL FEATURES

section later in this laboratory for additional suggested command options.

The framework of the noninteractive (static) HTML noteboard that you are required to

implement for this project follows. This HTML file will produce a vertical layout. (The HTML

Command Description

start mm Sets the first month to display, where mm is in the range 1–12.

end mm Sets the last month to display, where mm is in the range 1–12.

category filter Sets the category filter, where filter is a text string (without whitespace).

background color Sets the background color (bgcolor) of the noteboard, where color is a text string contain-

ing a valid HTML color constant.

text color Sets the text (foreground) color of the noteboard, where color is a text string containing a

valid HTML color constant.

layout style Sets the noteboard layout, where style is either horizontal or vertical.

html filename Generates an HTML calendar noteboard file named filename for the filtered months and

notes, using the specified colors and layout.

print mm Outputs to the screen the calendar noteboard for the specified month (mm) including the

month's display along with its filtered notes.

help Displays this list of commands along with a short description of each command.

quit Terminates the program.

TEAMFL
Y

Team-Fly®

LABORATORY 16

386

framework given in the OPTIONAL FEATURES section of this laboratory will produce a hori-

zontal layout. Also included, of course, are the HTML tags that make it interactive.) Depending

on the current setting of the noteboard’s layout (horizontal or vertical), it is required that your

program accordingly produces a static HTML noteboard file that displays the noteboard in the

specified layout.

<html>
<head>
<title>Noteboard</title>
</head>
<body bgcolor=white text=black>
<hr width=100%>
<table cellspacing=10>
<tr><td>

<pre>
January 2002
 S M T W T F S
 01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
</pre>
</td></tr>
<tr><td>
1/1Happy New Year

1/2Recover

1/15MLK Day

</td></tr>
</table>
<hr width=100%>
<table cellspacing=10>
<tr><td>

<pre>
 ... Calendar and notes for February ...

</td></tr>
</table>
...
 ... Calendar and notes for December ...

</td></tr>
</table>
<hr width=100%>
</body>
</html>

LABORATORY 16

387

Optional Features

(Check with your instructor before including this in your project.)

This program can be designed with many other enhancements. For example, additional user

commands might include the following:

• year yyyy—to change the calendar year,

• addNote—to add a note to the set of notes for the calendar, (also gives the user the option of

appending the new note to the end of the .nbd file that was read in at the beginning of the

program),

• delete—to remove a note from the noteboard and/or the .nbd file,

• edit—to revise an existing note rather than having to use delete and addNote.

These and other enhancements you may consider useful should be discussed with your team-

mates (and, in a real programming project, with the user) to determine their practicality and

feasibility.

Another interesting program enhancement is to create an interactive noteboard. When the

interactive property setting is true, it is intended that the program will produce an interactive

HTML noteboard consisting of the following:

• A menu bar listing the months that can be displayed.

• The calendar and notes for the month the user selected from the menu bar.

A sample interactive noteboard is illustrated below. If the user clicks “June,” then the calendar

and notes for June are displayed. On the other hand, if the user clicks “September,” then the

calendar and notes for September are displayed.

The interactive property is defined as follows:

Appearance property Description

interactive true/false Indicates whether the HTML file is interactive (true) or static (false).

Default: true

January February March April May June July August September October November December

Calendar and notes

for the selected month

LABORATORY 16

388

The following HTML framework will produce the interactive noteboard. Please note that besides

being interactive, this HTML will have a horizontal layout.

<html>
<head>
<title>Noteboard</title>
<script src=menu.js></script>
</head>
<body bgcolor=white text=black>
<table width=100%>
<tr>
<td><a style='color:black;text-decoration:none' href=#
 onclick=select('month1')>January</td>
<td><a style='color:black;text-decoration:none' href=#
 onclick=select('month2')>February</td>
...
<td><a style='color:black;text-decoration:none' href=#
 onclick=select('month12')>December</td>
</tr>
</table>
<hr width=100%>
<div id=month1
 style='position:absolute;left:0;top:60;visibility:hidden'>
<table cellspacing=10>
<tr>
<td valign=top>

<pre>
January 2002
 S M T W T F S
 01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
</pre>
</td>
<td valign=top>
1/1Happy New Year

1/2Recover

1/15MLK Day

</td>
</tr>
</table>
<hr width=100%>
</div>
<div id=month2
 style='position:absolute;left:0;top:60;visibility:hidden'>
 ... Calendar and notes for February ...

</div>
....

LABORATORY 16

389

<div id=month12
 style='position:absolute;left:0;top:60;visibility:hidden'>
 ... Calendar and notes for December ...

</div>
</body>
</html>

Note that the contents of the noteboard (months and notes) are still specified by the content

filters and the noteboard’s appearance (colors and layout) is still specified by the appearance

properties.

Generating the interactive HTML noteboard is similar to generating the static noteboard. The

HTML file still contains all of the calendars and notes. The difference is that each month’s cal-

endar and note set are grouped into an identifiable <div> element. One <div> element is gen-

erated for each month, as in the following example.

<div id=month1
 style='position:absolute;left:0;top:60;visibility:hidden'>
 ... Calendar and notes for January ...

</div>
<div id=month2
 style='position:absolute;left:0;top:60;visibility:hidden'>
 ... Calendar and notes for February ...

</div>
...

Note that all the months have the same position (one on top of the other) and that all the

months are initially marked as hidden (not visible).

The menu bar at the top of the interactive noteboard display consists of a simple HTML table of

the following form. This code appears near the beginning of the interactive HTML file.

<table width=100%>
<tr>
<td><a style='color:black;text-decoration:none' href=#
 onclick=select('month1')>January</td>
<td><a style='color:black;text-decoration:none' href=#
 onclick=select('month2')>February</td>
...
<td><a style='color:black;text-decoration:none' href=#
 onclick=select('month12')>December</td>
</tr>
</table>

Clicking the name of a month on the menu bar activates the JavaScript select() function for

the corresponding month. This function, in turn, reveals the selected month’s <div> element.

The file menu.js contains the required JavaScript code. You include this code near the

beginning of the HTML file as follows:

<head>
...
<script src=menu.js></script>
</head>

LABORATORY 16

390

LABORATORY 16 — Week 1: Bridge Exercise

Project Development Phases 1, 2, and 3

Name

Hour/Period/Section

Date

The development phases of this team project will span across Week 1 and Week 2. In Week 1

you will analyze and design the calendar/noteboard project using the OOAD techniques illus-

trated in the child’s calculator problem presented in Prelab Exercise 1. In Week 2 you will

implement and test the final calendar/noteboard project system.

Phase 1: Project Design

Step 1: Individually identify the objects in the calendar/noteboard project discussed in Prelab

Exercise 2. Begin by applying the “using nouns” technique to find potential objects. In addition

be sure to look for objects that are not described explicitly in the problem statement but that

are implicitly part of the problem. Examples of these kinds of “hidden” objects are

• Objects that are collections (sets or lists) of other objects.

• Objects that provide the means (information or actions) through which other objects interre-

late—the role played by the Interface object in the child’s calculator problem, for instance.

Step 2: List each object’s attributes and behaviors. Recall that all verbs and predicate phrases

can be used to help identify object behaviors and that all adjectives can be used to help identify

object attributes. A blank project cover sheet for listing these object characteristics is given at

the end of this section.

Step 3: Review the sets of objects produced by you and your teammates. Focus your discus-

sion on the similarities and differences in how each of you saw the problem and created objects.

Did you produce different numbers of objects? If so, why? How do the objects differ in terms of

their attributes and their behaviors? Are these differences serious or merely cosmetic?

Remember that there are no rigid rules for the design process. Different people see problems in

different ways. These diverse perspectives, in turn, shed considerably more light on a problem

than does a single view.

Step 4: Combine your team’s efforts and create one set of objects/classes for the programming

project. Remember that while there are no rigid rules for the design process, it is important to

LABORATORY 16

391

consider how the various classes (objects) in your design will interact with one another. Some

questions to consider include the following:

• Does the class provide the functionality needed by the other classes?

• Is it clear what each class method does and how it is to be used?

• Is the class missing methods or does it have extra (unused) class methods?

• Does the class maintain the information needed by other classes? If so, do these classes have

a way of accessing this information?

• Do the classes in your design collectively provide the functionality required to solve the

problem?

Produce a document listing the objects, their attributes, and their behaviors similar to the

format used in the Prelab Exercise 1 in this laboratory.

Step 5: Assign each object to a team member. Each team member will design (and later imple-

ment) a Java class for each object, so try to balance the projected workload equitably among

team members.

Step 6: For each Java class, the designated team member is to provide the following informa-

tion:

• A brief description of the class focusing on what the class does and how it is used.

• A detailed specification for each class method similar to the method specifications presented

in each laboratory in this textbook.

• An incomplete/skeleton Java class definition, including data members and class methods.

• A list of the other classes that use this class (its clients).

• A list of the other classes that this class uses (its collaborators).

Phase 2: Project Test Plan

Step 1: As a team, create a test plan for each class in your design. A blank class test plan form

is given at the end of this section.

Step 2: Create a test plan for the complete project. A blank project test plan form is given at

the end of this section.

Phase 3: Document Team’s Project Plan

Complete documentation is an essential part of any programming project. The program’s design

must be carefully documented so that before writing any code, each team member is aware of

the configuration of entire project. Therefore, you are to combine your team’s efforts to produce

LABORATORY 16

392

a team design document for this programming project. Base the organization of your design

documentation on the following outline.

Week 1 Project Cover Sheets (one for each team member)

[see Phase 1—Steps 1 & 2 for details]

Object/Class Descriptions (one for each object/class)

 [see Phase 1—Step 4 for details]

Class Information (one for each class)

 [see Phase 1—Step 6 for details]

Class & Project Test Plans

 [see Phase 2]

LABORATORY 16

393

LABORATORY 16 — Week 1: Project Cover Sheet

Name

Hour/Period/Section

Date

Each team member is to individually identify the objects/classes in the OOAD calendar/note-

board project introduced in Prelab Exercise 2. Individual lists of objects will be reviewed by the

whole team and used to ultimately create one set of objects/classes for this project. For each

team member, attach one copy of this sheet to the front of your Team’s Project Plan (for Week

1). Use an additional sheet of paper if necessary.

Team member (name):

Proposed object/class:

Attributes:

Behaviors:

LABORATORY 16

394

Team member (name):

Proposed object/class:

Attributes:

Behaviors:

Proposed object/class:

Attributes:

Behaviors:

LABORATORY 16

395

Test case Sample data Expected result Checked

Test Plan for the class

TEAMFL
Y

Team-Fly®

LABORATORY 16

396

Test case Sample data Expected result Checked

Test Plan for the Calendar/Noteboard Programming
Project

LABORATORY 16

397

LABORATORY 16 — Week 1: In-lab Exercise

Implement the Child’s Calculator

Name

Hour/Period/Section

Date

Having completed the design of the child’s calculator program, our next task is to implement

the methods in the Calculator, Face, and Interface classes—as well as the calculator program’s

main() method. We will store our implementations for the Calculator, Face, and Interface

classes in the files Calculator.java, Face.java, and Interface.java, respectively. The implemen-

tation for the Command class may also be placed in the Interface.java file.

Let’s start the implementation process with the Calculator class. The methods of this class are

quite simple—no surprises here. The display() method forms the calculator using standard

ASCII characters. This approach allows for generality of use—every environment supports

ASCII text output—at the price of visual pizzazz. Because formatting is not always easily done

in Java, the display() method calls a private method that formats the value in accum within pre-

cisely 12 spaces.

public void display ()
// Displays a calculator.

{
 System.out.println("----------------");
 System.out.print("|");
 System.out.print(strRight(new Double(accum), 12));
 System.out.println(" |");
 System.out.println("| |");
 System.out.println("| 1 2 3 + |");
 System.out.println("| 4 5 6 - |");
 System.out.println("| 7 8 9 * |");
 System.out.println("| 0 C / |");
 System.out.println("----------------");
}

private String strRight(Object output, int minimumWidth)
// Creates a String using a specified width and right justification
// Works like setw(minimumWidth) in C++
{
 int i;
 StringBuffer s = new StringBuffer(output.toString());
 StringBuffer add = new StringBuffer();

LABORATORY 16

398

 // Create any leading spaces and then the Object itself.
 for (i = s.length(); i < minimumWidth; i++)
 add.append(" ");
 s.insert(0, add);
 return s.toString();
}

Implementing the Face class is an equally straightforward task. In this case, the display()

method outputs the smiley face discussed in the design phase, using both its “happy” and “sad”

incarnations that are commonly used in textual e-mail messages.

public void display ()
// Displays a face.
{
 if (state == 1)
 System.out.print(":-)");
 else
 System.out.print(":-(");
}

Implementing the Interface class is a little trickier. Recall that this class has three data

members: calc, smiley, and userCmd. The Interface class constructor must correctly initialize

all these data members including setting the command name (userCmd.cmd) to the null char-

acter.

public Interface ()
// Default Constructor. Creates an interface and initializes its
// data members.

{
 calc = new Calculator();
 smiley = new Face();
 userCmd = new Command();
 userCmd.cmd = '\0';
}

The generateDisplay() method uses the display() methods in the Face and Calculator classes

to display the smiley face followed by the calculator. Note that additional formatting is done to

center the smiley face above the calculator.

public void generateDisplay ()
// Generates an interface display consisting of a happy/sad face and
// a calculator.

{
 System.out.println();
 System.out.print(" ");
 smiley.display();
 System.out.println();
 calc.display();
}

LABORATORY 16

399

User commands are read from the keyboard by the getCommand() method. If a command has a

numeric argument, this argument is read in as well. The input command and argument (if any)

are stored in userCmd.

public void getCommand ()
// Prompts the user for a command, reads in a command from the
// keyboard, and stores it in userCmd.
{

 System.out.print("Enter command: ");
 userCmd.cmd = (char)System.in.read();
 while (Character.isWhitespace(userCmd.cmd))
 userCmd.cmd = (char)System.in.read();

 if (userCmd.cmd == '+' || userCmd.cmd == '-' ||
 userCmd.cmd == '*' || userCmd.cmd == '/')
 {
 tokens.nextToken();
 userCmd.arg = tokens.nval;
 }
}

The executeCommand() method processes the user’s last command. This method must rely on

the methods of the Face and Calculator classes to modify the smiley and calc objects.

public void executeCommand () throws IOException
// Executes the user's last command (in userCmd).

{
 switch (userCmd.cmd)
 {
 case '+' : calc.add(userCmd.arg); break;
 case '-' : calc.subtract(userCmd.arg); break;
 case '*' : calc.multiply(userCmd.arg); break;
 case '/' : if (userCmd.arg != 0)
 calc.divide(userCmd.arg);
 else
 System.out.println("Cannot divide by 0");
 break;
 case 'C' :
 case 'c' : calc.clear(); break;
 case 'Q' :
 case 'q' : break;
 default : System.out.print("Invalid command");
 }
 if (calc.value() < 0) // Update the face
 smiley.makeSad();
 else
 smiley.makeHappy();
}

LABORATORY 16

400

Finally, using the done() method, clients of the Interface class test whether the user has input

the Q (quit) command.

public boolean done ()
// Returns true if the user has entered the Q (quit) command.
// Otherwise,returns false.

{
 return (userCmd.cmd == 'Q' || userCmd.cmd == 'q');
}

After completing the implementation of the Face, Calculator, and Interface classes, all that is

left to do is create a main() method that moves the interface through repetitions of the following

three-step cycle:

generate display,
get command, and
execute command.

See the file KidCalc.java.

At this point, we have completed development of the child’s calculator program. The question

that now arises is: How do we test and debug our program? One approach would be to throw

everything together and test the entire program as a whole. The problem with this approach is

that testing and debugging an even moderately large program can easily become overwhelming,

with errors compounding errors and everything falling into chaos. A better approach is to test

and debug our program using the same strategy that we used to develop it. First, we test each

class. Once we’ve worked out the bugs in the individual classes, we combine them and test the

complete program.

We start by testing the classes that do not depend on other classes and work our way up through

the class hierarchy. Let’s start with the Calculator class. We begin by developing a simple test

program that provides us with the ability to check each method using various input values. A

simple interactive test program for the Calculator class is given below (and available in the file

TestCalc.java).

import java.io.*;

class TestCalc
{
 public static void main (String args[]) throws IOException
 {
 Calculator calc = new Calculator(); // Calculator object
 char oper; // Input operator
 double num; // Input number

 BufferedReader ins =
 new BufferedReader(new InputStreamReader(System.in));
 StreamTokenizer tokens = new StreamTokenizer(ins);

LABORATORY 16

401

 // Test the arithmetic methods and the value() method.
 System.out.println();
 System.out.println("Start of testing");

 do
 {
 calc.display();
 System.out.println();
 System.out.print("Enter operator (Q 0 to end) : ");
 oper = (char)System.in.read();
 while (Character.isWhitespace(oper))
 oper = (char)System.in.read();
 tokens.nextToken();
 num = tokens.nval;

 switch (oper)
 {
 case '+' : calc.add(num); break;
 case '-' : calc.subtract(num); break;
 case '*' : calc.multiply(num); break;
 case '/' : calc.divide(num); break;
 }

 System.out.println("Calculator value : "
 + calc.value());

 } while (oper != 'Q' && oper != 'q');

 // Test the clear() method.

 calc.clear();
 System.out.println();
 System.out.println("Calculator cleared");
 calc.display();
 }

} // class TestCalc

Testing the Face class is equally straightforward (see the file TestFace.java).

Once the Calculator and Face classes have been thoroughly tested and debugged, we can begin

testing the Interface class, which depends on these two classes. Note that testing the Interface

class before we are sure that the Calculator and Face classes work properly is just asking for

trouble. Adding a simple method such as showCommands() to the Interface class is all that is

needed to check that the getCommand() method is reading in user commands correctly using

the file TestIntf.java.

LABORATORY 16

402

public void showCommands()
// For testing/debugging purposes only
{
 // Echo the command read
 System.out.println("Command: " + userCmd.cmd);
 // Echo the argument read
 System.out.println("Argument: " + userCmd.arg);
}

Next, we test the executeCommand() method by uncommenting the rest of the statements in the

TestIntf.java program and perhaps commenting out the showCommands() statement. Finally, we

run a systematic test of the entire program using the file KidCalc.java.

Follow-Up Exercise

The following files will contain the class implementations and test programs for the classes

developed above.

Step 1: Informally test (no test plan required) the implementation of the Face class in the file

Face.java using the test program in the file TestFace.java.

Step 2: Informally test the implementation of the Calculator class in the file Calculator.java

using the test program in the file TestCalc.java.

Step 3: Informally test the implementation of the Interface class in the file Interface.java

using the test program in the file TestIntf.java.

Step 4: Having completed the testing of these classes, informally test the child’s calculator

program using the class implementations in the files Face.java, Calculator.java, and

Interface.java and the main() method in the file KidCalc.java.

Class Implementation Test program

Face Face.java TestFace.java

Calculator Calculator.java TestCalc.java

Interface Interface.java TestIntf.java

LABORATORY 16

403

LABORATORY 16 — Week 2: Project Cover Sheet

Name

Hour/Period/Section

Date

List the members in your software development team and the class (or classes) each team

member implemented in the following In-lab Exercise for Week 2. Attach one copy of this sheet

to the front of your team’s implementation documents for Week 2.

Team member (name) Classes implemented Completed

LABORATORY 16

404

LABORATORY 16 — Week 2: In-lab Exercise

Implement the Calendar/Noteboard Program

Name

Hour/Period/Section

Date

During the first week of this laboratory, you and your teammates developed a design and test

plan for this calendar/noteboard programming project by completing development Phases 1, 2,

and 3. This week in development Phases 4 and 5, each team member implements and tests the

classes that they designed last week. These efforts are then combined to produce a complete

program.

Some Preliminary Implementation Notes

In order to produce a calendar for a given month, you need to know on which day of the week

the first day of the month occurs. In addition, you need to know if a particular year is a

leap year. To facilitate these operations, you may want to include Java’s built-in class

GregorianCalendar in your implementation either as a superclass or as a data member of one of

your class definitions.

You may also find the built-in Vector class useful for implementing dynamic arrays in your pro-

gramming project. A vector is essentially a variable-length array of object references.

To create an InputStream object connected to a file, you need to use a statement that creates an

instance of the FileInputStream class for a specified file. For example, the following creates a

FileInputStream object called inFile, which is attached to the file sample.nbd:

FileInputStream inFile = new FileInputStream("sample.nbd");

To create a BufferedReader for an InputStreamReader object connected to this

FileInputStream, you need to use a statement similar to the following:

BufferedReader finReader = new BufferedReader(new InputStreamReader(inFile));

Remember a BufferedReader is used to provide optimum reading efficiency.

Last, as in several previous laboratory exercises, you may want to insert a tokenizer (either the

StreamTokenizer class or the StringTokenizer class) in your program so you can process com-

plete numbers, words, or strings. Also, you may want to consider using the StreamTokenizer

method lowerCaseMode() or the String method toLowerCase() so the user’s input will not be

case sensitive.

LABORATORY 16

405

Writing to a file is very similar to reading from a file. First, you connect to an output file by cre-

ating an instance of the FileOutputStream class for a specified file. For example, the following

statement creates a FileOutputStream object called htmlFile, which is attached to the file

notebd.html:

FileOutputStream htmlFile = new FileOutputStream("notebd.html");

To write characters and strings to this stream rather than a byte at a time, you must create an

instance of PrintWriter from the FileOutputStream instance as follows:

PrintWriter writer = new PrinterWriter(htmlFile);

Once you have an instance of PrintWriter, you can write strings to the stream, using the print

and println methods similar to those used with System.out. For example, the following

statement will write the string <html> to the file output stream declared above:

writer.println("<html>");

As a matter of good programming practice, you should always close files using the close method

once they are no longer needed.

Phase 4: Project Implementation and Testing

Step 1: Implement the methods for each of your assigned classes in your team’s design. The

team member whose class manages the user interface should also implement the program’s

main() method. Be sure to document your code.

Should you make any changes to a class—by adding a data member or a class method, for

instance—be certain to inform your teammates in a timely manner.

Step 2: Test the classes you implemented by creating test programs to run the class test plans

you developed in Step 1 of Phase 2. For each class, check each case in the class’s test plan and

verify the expected result. If you discover mistakes in a class implementation, correct them and

execute the class’s test plan again.

Step 3: Combine your tested class implementations with your teammates’ efforts to produce a

complete program. Test your complete project. Check each case in your project test plan and

verify the expected result. If you discover mistakes in your program, correct them and execute

the project test plan again.

TEAMFL
Y

Team-Fly®

LABORATORY 16

406

Step 4: Create an implementation document that contains the source code and test plans for

your team’s program. Base the organization of your document on the following outline.

Week 2 Cover Sheet

Class implementations and test results (one for each class)

Test results for the complete program

LABORATORY 16

407

LABORATORY 16 — Postlab Exercise

Name

Hour/Period/Section

Date

Phase 5: Project Analysis

What problems did your team face in implementing your class designs? What caused these

problems? How would you avoid these kinds of problems in future programming efforts?

	Cover
	Preface
	Contents
	Logbook ADT
	Logbook ADT
	LABORATORY 1: Cover Sheet
	LABORATORY 1: Prelab Exercise
	LABORATORY 1: Bridge Exercise
	Test Plan for Test1
	Test Plan for Test2
	LABORATORY 1: In-lab Exercise 1
	Test Plan for Test3
	LABORATORY 1: In-lab Exercise 2
	Test Plan for Test4
	LABORATORY 1: In-lab Exercise 3
	Test Plan for Test5
	LABORATORY 1: Postlab Exercise 1
	LABORATORY 1: Postlab Exercise 2
	LABORATORY

	Point List ADT
	Point List ADT
	LABORATORY 2: Cover Sheet
	LABORATORY 2: Prelab Exercise
	LABORATORY 2: Bridge Exercise
	Test Plan for the Operations in the Point List ADT
	LABORATORY 2: In-lab Exercise 1
	Test Plan for the Curve Drawing Program
	LABORATORY 2: In-lab Exercise 2
	Test Plan for the Curve Drawing Program
	LABORATORY 2: In-lab Exercise 3
	Test Plan for the insertBeginning Operation
	LABORATORY 2: Postlab Exercise 1
	LABORATORY 2: Postlab Exercise 2
	LABORATORY

	String ADT
	STRING ADT (a built-in class)
	LABORATORY 3: Cover Sheet
	LABORATORY 3: Prelab Exercise
	LABORATORY 3: Bridge Exercise
	Test Plan for Test1
	Test Plan for Test2
	Test Plan for Test3
	Test Plan for Test4
	Test Plan for Test5
	LABORATORY 3: In-lab Exercise 1
	Test Plan for the Lexical Analysis Program
	LABORATORY 3: In-lab Exercise 2
	Test Plan for the Hangman Program
	LABORATORY 3: In-lab Exercise 3
	LABORATORY 3: Postlab Exercise 1
	LABORATORY 3: Postlab Exercise 2
	LABORATORY

	Array Implementation of the List ADT
	List ADT
	LABORATORY 4: Cover Sheet
	LABORATORY 4: Prelab Exercise
	LABORATORY 4: Bridge Exercise
	Test Plan for the Operations in the List ADT
	LABORATORY 4: In-lab Exercise 1
	Test Plan for the countBases() Method
	LABORATORY 4: In-lab Exercise 2
	Test Plan for the moveToNth Operation
	LABORATORY 4: In-lab Exercise 3
	Test Plan for the Þnd Operation
	LABORATORY 4: Postlab Exercise 1
	LABORATORY 4: Postlab Exercise 2
	LABORATORY

	Stack ADT
	Stack ADT
	LABORATORY 5: Cover Sheet
	LABORATORY 5: Prelab Exercise
	LABORATORY 5: Bridge Exercise
	Test Plan for the Operations in the Stack ADT
	LABORATORY 5: In-lab Exercise 1
	LABORATORY 5: In-lab Exercise 2
	Test Plan for the Copy Constructor and clone Operation
	LABORATORY 5: In-lab Exercise 3
	Test Plan for the PostÞx Arithmetic Expression
	Evaluation Program
	LABORATORY 5: Postlab Exercise 1
	LABORATORY 5: Postlab Exercise 2
	LABORATORY

	Queue ADT
	Queue ADT
	LABORATORY 6: Cover Sheet
	LABORATORY 6: Prelab Exercise
	LABORATORY 6: Bridge Exercise
	Test Plan for the Operations in the Queue ADT
	LABORATORY 6: In-lab Exercise 1
	Test Plan for the putFront and getRear Operations
	LABORATORY 6: In-lab Exercise 2
	Test Plan for the Length Operation
	LABORATORY 6: In-lab Exercise 3
	LABORATORY 6: Postlab Exercise 1
	LABORATORY 6: Postlab Exercise 2
	LABORATORY

	Singly Linked List Implementation of the List ADT
	List ADT
	LABORATORY 7: Cover Sheet
	LABORATORY 7: Prelab Exercise
	LABORATORY 7: Bridge Exercise
	Test Plan for the Operations in the List ADT
	LABORATORY 7: In-lab Exercise 1
	Test Plan for the moveToBeginning Operation
	LABORATORY 7: In-lab Exercise 2
	Test Plan for the insertBefore Operation
	LABORATORY 7: In-lab Exercise 3
	Test Plan for the Slide Show Program
	LABORATORY 7: Postlab Exercise 1
	LABORATORY 7: Postlab Exercise 2
	LABORATORY

	Doubly Linked List Implementation of the List ADT
	LIST ADT
	LABORATORY 8: Cover Sheet
	LABORATORY 8: Prelab Exercise
	LABORATORY 8: Bridge Exercise
	Test Plan for the Operations in the List ADT
	LABORATORY 8: In-lab Exercise 1
	Test Plan for the reverse Operation
	LABORATORY 8: In-lab Exercise 2
	Test Plan for the length and position Operations
	LABORATORY 8: In-lab Exercise 3
	Anagram Puzzle ADT
	Test Plan for the Anagram Puzzle Program
	LABORATORY 8: Postlab Exercise 1
	LABORATORY 8: Postlab Exercise 2
	LABORATORY

	Ordered List ADT
	Ordered List ADT
	LABORATORY 9: Cover Sheet
	LABORATORY 9: Prelab Exercise
	LABORATORY 9: Bridge Exercise
	Test Plan for the Operations in the Ordered List ADT
	Laboratory 9: In-lab Exercise 1
	Test Plan for the merge Operation
	LABORATORY 9: In-lab Exercise 2
	Test Plan for the subset Operation
	LABORATORY 9: In-lab Exercise 3
	Test Plan for the Message Processing Program
	LABORATORY 9: Postlab Exercise 1
	Array Implementation of the insert Operation
	Linked List Implementation of the insert Operation
	LABORATORY 9: Postlab Exercise 2
	LABORATORY

	Recursion with Linked Lists
	LABORATORY 10: Cover Sheet
	LABORATORY 10: Prelab Exercise
	LABORATORY 10: Bridge Exercise
	LABORATORY 10: In-lab Exercise 1
	Test Plan for the iterReverse() Method
	Test Plan for the stackWriteMirror() Method
	LABORATORY 10: In-lab Exercise 2
	Test Plan for the aBeforeb() Method
	LABORATORY 10: In-lab Exercise 3
	Test Plan for the cRemove() Method
	LABORATORY 10: Postlab Exercise 1
	LABORATORY 10: Postlab Exercise 2
	LABORATORY

	Expression Tree ADT
	Expression Tree ADT
	LABORATORY 11: Cover Sheet
	LABORATORY 11: Prelab Exercise
	LABORATORY 11: Bridge Exercise
	Test Plan for the Operations in the Expression Tree ADT
	LABORATORY 11: In-lab Exercise 1
	Test Plan for the Copy Constructor and clone Operation
	LABORATORY 11: In-lab Exercise 2
	Test Plan for the commute Operation
	LABORATORY 11: In-lab Exercise 3
	Test Plan for the Operations in the Logic Expression
	Tree ADT
	LABORATORY 11: Postlab Exercise 1
	LABORATORY 11: Postlab Exercise 2
	LABORATORY

	Binary Search Tree ADT
	Binary Search Tree ADT
	LABORATORY 12: Cover Sheet
	Laboratory 12: Prelab Exercise
	Laboratory 12: Bridge Exercise
	Test Plan for the Operations in the Binary Search Tree
	ADT
	Laboratory 12: In-lab Exercise 1
	Test Plan for the height Operation
	Laboratory 12: In-lab Exercise 2
	Test Plan for the writeLessThan Operation
	Laboratory 12: In-lab Exercise 3
	Test Plan for the Indexed Accounts Database Program
	Laboratory 12: Postlab Exercise 1
	Laboratory 12: Postlab Exercise 2
	LABORATORY

	Heap ADT
	Heap ADT
	LABORATORY 13: Cover Sheet
	LABORATORY 13: Prelab Exercise
	LABORATORY 13: Bridge Exercise
	Test Plan for the Operations in the Heap ADT
	LABORATORY 13: In-lab Exercise 1
	Test Plan for the writeLevels Operation
	LABORATORY 13: In-lab Exercise 2
	Test Plan for the heapSort() Method
	LABORATORY 13: In-lab Exercise 3
	Priority Queue ADT
	LABORATORY 13: Postlab Exercise 1
	LABORATORY 13: Postlab Exercise 2
	LABORATORY

	Weighted Graph ADT
	Weighted Graph ADT
	LABORATORY 14: Cover Sheet
	LABORATORY 14: Prelab Exercise
	LABORATORY 14: Bridge Exercise
	Test Plan for the Operations in the Weighted Graph ADT
	LABORATORY 14: In-lab Exercise 1
	Test Plan for the allEven Operation
	LABORATORY 14: In-lab Exercise 2
	Test Plan for the properColoring Operation
	LABORATORY 14: In-lab Exercise 3
	Test Plan for the computePaths Operation
	LABORATORY 14: Postlab Exercise 1
	LABORATORY 14: Postlab Exercise 2
	LABORATORY

	Performance Evaluation
	Timer ADT
	LABORATORY 15: Cover Sheet
	LABORATORY 15: Prelab Exercise
	LABORATORY 15: Bridge Exercise
	Test Plan for the Operations in the Timer ADT
	LABORATORY 15: In-lab Exercise 1
	Execution Times of a Set of Searching Routines
	LABORATORY 15: In-lab Exercise 2
	Execution Times of a Set of Sorting Routines
	LABORATORY 15: In-lab Exercise 3
	Time to Fill and Empty a 10,000-Element Stack
	LABORATORY 15: Postlab Exercise 1
	LABORATORY 15: Postlab Exercise 2
	Execution Times of a Set of Sorting Routines
	Execution Times of a Set of Sorting Routines
	LABORATORY

	Team Software Development Project
	LABORATORY 16 Ñ Week 1: Prelab Exercise 1
	LABORATORY 16 Ñ Week 1: Prelab Exercise 2
	LABORATORY 16 Ñ Week 1: Bridge Exercise
	LABORATORY 16 Ñ Week 1: Project Cover Sheet
	Test Plan for the class
	Test Plan for the Calendar/Noteboard Programming
	Project
	LABORATORY 16 Ñ Week 1: In-lab Exercise
	LABORATORY 16 Ñ Week 2: Project Cover Sheet
	LABORATORY 16 Ñ Week 2: In-lab Exercise
	LABORATORY 16 Ñ Postlab Exercise

